
MLX200
SOFTWARE AND OPERATION
USERS MANUAL
VERSION 2.0
Upon receipt of the product and prior to initial operation, read these instructions thoroughly, and retain
for future reference.
Part Number: 168542-1CD
Revision: 5

MOTOMAN INSTRUCTIONS

MOTOMAN- INSTRUCTIONS
MLX200 HARDWARE INSTALLATION AND SOFTWARE UPGRADE
1 of 206

168542-1CD

MLX200 Software and
Operations
CONFIDENTIAL AND PROPRIETARY. Copyright ©2009, 2015 Yaskawa
and its licensor's. This software code contains proprietary trade secrets of
Yaskawa Innovation Inc. and its licensor’s and is also protected by U.S.
and other copyright laws and applicable international treaties. Any use
compilation, modification, distribution, reproduction, performance, display,
or disclosure (“Use”) of this software CD is subject to the terms and
conditions of your written agreement with Agile Planet. If you do not have
such an agreement, then any Use of this material is strictly prohibited.
Unauthorized Use of this software code, or any portion of it, will result in
civil liability and/or criminal penalties.

The information herein is subject to change without notice and should not
be construed as a commitment by Yasakwa Motoman Robotics. This
manual is periodically reviewed and revised. Yaskawa Motoman Robotics,
assumes no responsibility for any errors or omissions in this document.
ii

168542-1CD

2 of 206

168542-1CD

MLX200 Software and
Operations

MANDATORY

This manual explains the various components of the MLX200
application system and general operations. Read this manual carefully
and be sure to understand its contents before operating the MLX200
application.

CAUTION

• Some drawings in this manual are shown with the protective covers
or shields removed for clarity. Be sure all covers and shields are
replaced before operating this product.

• The drawings and photos in this manual are representative
examples and differences may exist between them and the
delivered product.

• YASKAWA may modify this model without notice when necessary
due to product improvements, modifications, or changes in
specifications. If such modification is made, the manual number will
also be revised.

• If your copy of the manual is damaged or lost, contact a YASKAWA
representative to order a new copy. The representatives are listed
on the back cover. Be sure to tell the representative the manual
number listed on the front cover.

• YASKAWA is not responsible for incidents arising from unauthorized
modification of its products. Unauthorized modification voids your
product’s warranty.
iii

168542-1CD

3 of 206

168542-1CD

MLX200 Software and
Operations
We suggest that you obtain and review a copy of the ANSI/RIA National
Safety Standard for Industrial Robots and Robot Systems (ANSI/RIA
R15.06-2012). You can obtain this document from the Robotic Industries
Association (RIA) at the following address:

Robotic Industries Association
900 Victors Way
P.O. Box 3724

Ann Arbor, Michigan 48106
TEL: (734) 994-6088
FAX: (734) 994-3338

www.roboticsonline.com

Ultimately, well-trained personnel are the best safeguard against
accidents and damage that can result from improper operation of the
equipment. The customer is responsible for providing adequately trained
personnel to operate, program, and maintain the equipment. NEVER
ALLOW UNTRAINED PERSONNEL TO OPERATE, PROGRAM, OR
REPAIR THE EQUIPMENT!

We recommend approved Yaskawa training courses for all personnel
involved with the operation, programming, or repair of the equipment.

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to part 15 of the FCC rules. These limits
are designed to provide reasonable protection against harmful
interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio
frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio
communications.
iv

168542-1CD

4 of 206

168542-1CD

MLX200 Software and
Operations

Notes for Safe Operation
Read this manual carefully before installation, operation, maintenance, or
inspection of the MLX200.

In this manual, the Notes for Safe Operation are classified as
“WARNING”, “CAUTION”, “MANDATORY”, or “PROHIBITED”.

Even items described as “CAUTION” may result in a serious accident in
some situations.

At any rate, be sure to follow these important items.

WARNING
Indicates a potentially hazardous
situation which, if not avoided, could
result in death or serious injury to
personnel.

CAUTION
Indicates a potentially hazardous
situation which, if not avoided, could
result in minor or moderate injury to
personnel and damage to equipment.
It may also be used to alert against
unsafe practices.

MANDATORY
Always be sure to follow explicitly the
items listed under this heading.

PROHIBITED Must never be performed.

NOTE
To ensure safe and efficient operation at all times, be sure
to follow all instructions, even if not designated as
“CAUTION” and “WARNING”.
v

168542-1CD

5 of 206

168542-1CD

MLX200 Software and
Operations
WARNING
• Confirm that no person is present in the P-point maximum envelope

of the manipulator and that you are in a safe location before:
- Turning ON the MLX200 Control Module power
- Moving the manipulator with programming pendant or MLX200
Control Module HMI
- Running the system in the check mode
- Performing automatic operations

Injury may result if anyone enters the P-point maximum envelope of the
manipulator during operation. Always press the [EMERGENCY STOP]
button immediately if there are problems. The [EMERGENCY STOP]
button is located on the right of the programming pendant.

• Observe the following precautions when performing teaching
operations within the P-point maximum envelope of the
manipulator:
- View the manipulator from the front whenever possible.
- Always follow the predetermined operating procedure.
- Ensure that you have a safe place to retreat in case of
 emergency.

Improper or unintended manipulator operation may result in injury.

• Before operating the manipulator, check that servo power is turned
OFF when the [EMERGENCY STOP] button on programming
pendant is pressed.
When the servo power is turned OFF, the SERVO ON INDICATOR
on the programming pendant or MLX200 Control Module HMI is
turned OFF.

Injury or damage to machinery may result if the Emergency Stop circuit
cannot stop the positioner during an emergency. The positioner should
not be used if the [EMERGENCY STOP] buttons do not function.

Fig. 1: EMERGENCY STOP Button

• Release the [EMERGENCY STOP] button (refer to Fig. 2). Once
this button is released, clear the cell of all items which could
interfere with the operation of the positioner. Then turn servo power
ON.

Injury may result from unintentional or unexpected positioner motion.

Fig. 2: Release of EMERGENCY STOP Button

TURN
vi

168542-1CD

6 of 206

168542-1CD

MLX200 Software and
Operations

Definition of Terms Used Often in This Manual
The MOTOMAN is the YASKAWA industrial robot product.

The MOTOMAN usually consists of the manipulator, a control module, a
programming pendant, and supply cables.

In this manual, the equipment is designated as follows.

Descriptions of the programming pendant keys, buttons, and displays are
shown as follows:

CAUTION

• Perform the following inspection procedures prior to conducting
manipulator teaching. If problems are found, repair them
immediately, and be sure that all other necessary processing has
been performed.
-Check for problems in manipulator movement.
-Check for damage to insulation and sheathing of external wires.

The optional programming pendant can be damaged if it is left in the
P-point maximum envelope of the manipulator’s work area, on the floor,
or near fixtures.

• Read and understand the Explanation of the Warning Labels before
operating the manipulator.

Equipment Manual Designation

MLX200 Control Module MLX200

MLX200 Programming Pendant Programming pendant

Equipment Manual Designation

Programming
Pendant

Character
Keys/ Symbol
Keys

The keys which have characters or its
symbol printed on them are denoted with [].
ex. [ENTER]

Axis Keys /
Numeric Keys

[Axis Key] and [Numeric Key] are generic
names for the keys for axis operation and
number input.

Keys pressed
simultaneously

When two keys are to be pressed
simultaneously, the keys are shown with a
“+” sign between them,
ex. [SHIFT]+[COORD]

Displays The menu displayed in the programming
pendant is denoted with {}.
ex. {JOB}
vii

168542-1CD

7 of 206

168542-1CD

MLX200 Software and
Operations
Description of the Operation Procedure
In the explanation of the operation procedure, the expression “Select • • • “
mns that the cursor is moved to the object item and the SELECT key is
pressed, or that the item is directly selected by touching the screen.

Registered Trademark
In this manual, names of companies, corporations, or products are
trademarks, registered trademarks, or brand names for each company or
corporation. The indications of (R) and TM are omitted.

Explanation of Warning Labels
The following warning labels are attached to the manipulator.

Fully comply with the precautions on the warning labels.

WARNING
• The label described below is attached to the manipulator. Observe

the precautions on the warning labels.

• Failure to observe this caution may result in injury or damage to
equipment.

Refer to the manipulator manual for the warning label location.

WARNING
Do not enter
robot
work area.

WARNING
Moving parts
may cause
injury
viii

168542-1CD

8 of 206

168542-1CD

MLX200 Software and
Operations

 Table of Contents

Table of Contents

1 Introduction ... 1-1

1.1 Requirements .. 1-1

1.1.1 Rockwell Automation PAC/PLC requirements for the MLX200: 1-1

1.1.2 RSLogix 5000 files included with the MLX200 Control Module: 1-2

1.2 System Layout for the MLX200 Control Module .. 1-2

1.3 Customer Support Information... 1-3

2 System Configuration.. 2-5

2.1 MLX200 Control Module.. 2-5

2.2 Configuring RSLogix Project.. 2-7

2.2.1 Pre-Configured RSLogix Projects... 2-7

2.2.1.1 Configuring the Logix Controller.. 2-7

2.2.1.2 Configuring an MLX200 Control Module Communication 2-8

2.2.2 Importing MLX200 into Existing Project.. 2-9

2.2.2.1 Import MLX200 AOIS AND UDTS... 2-9

2.2.2.2 Creating the MLX200 Communications Task.. 2-10

2.2.2.3 Adding an MLX200 Control Module to the I/O Configuration 2-11

3 Developing with MLX200 .. 3-1

3.1 MLX200 Tag Structures... 3-2

3.1.1 MLx-Level Tag Structure .. 3-2

3.1.2 Robot-Level Tag Structure ... 3-3

3.1.3 Axis-level Tag Structure ... 3-4

3.1.4 Application Data Tag Structure... 3-5

3.2 Instruction Overview .. 3-7

3.2.1 System Commands .. 3-7

3.2.2 Robot Commands... 3-8

3.3 Programming Introduction ... 3-9

3.3.1 Task Scheduling... 3-9

3.3.2 Instruction Execution and Status Bits ... 3-9

3.3.3 State Management and Configuration Instructions .. 3-10

3.3.4 Motion Instructions ... 3-11

3.3.4.1 Speed, Acceleration, Jerk Parameters.. 3-12

3.3.4.2 Trajectory Shape... 3-12

3.3.4.3 Blend Factor .. 3-13
ix

168542-1CD

9 of 206

 Table of Contents

168542-1CD

MLX200 Software and
Operations
3.3.5 Coordinate Frames Relevant to Robotics... 3-14

3.3.6 Jogging Motions.. 3-16

3.3.7 Error Messages .. 3-17

3.3.8 Stopping and Recovering Robot Motion ...3-17

3.3.8.1 Aborted Motions ..3-18

3.3.8.2 Stopped Motions ... 3-18

3.3.9 Using Global Speed Scale.. 3-19

3.4 MLX-HMI..3-20

3.4.1 Setting Up the HMI ...3-20

3.4.1.1 Importing the MLx-HMI Task ...3-21

3.4.1.2 Importing MLxApplicationData... 3-22

3.4.1.3 Running the FTVIEW HMI Application .. 3-22

3.4.2 Main Screen.. 3-23

3.4.3 HMI Menu Selection ... 3-25

3.4.4 Login and Security Settings..3-27

3.4.5 Alarm Screen.. 3-30

3.4.6 Teach Screen ... 3-31

3.4.7 Tool and User Frame Screens.. 3-32

3.4.8 Cubic Interference Zones ... 3-33

3.4.9 Robot Configuration.. 3-34

3.4.10 Robot Info ... 3-35

3.4.11 Brake Release Screen.. 3-35

3.4.12 Interference Zone Status Screen.. 3-36

3.4.13 Information Screen ... 3-36

4 MLX200 Programming Guide.. 4-1

4.1 Developing a Simple Application ... 4-1

4.1.1 Teaching Points with MLX-MHI ..4-1

4.1.2 Accessing Taught Points From a Program... 4-2

4.1.3 OPERATING A USER APPLICATION FROM HMI .. 4-4

4.1.4 Teaching Points in User Frames .. 4-5

4.1.5 USING REFERENCE POSITION VALUES.. 4-6

4.1.5.1 Example 1: 6-Axis Robot ...4-7

4.1.5.2 Example 2: 4-Axis Palletizing Robot.. 4-10

4.1.5.3 Summary ... 4-11
x

168542-1CD

10 of 206

168542-1CD

MLX200 Software and
Operations

 Table of Contents

4.2 Configuration Instructions .. 4-12

4.2.1 Using Configuration Instructions... 4-12

4.2.2 Setting Multiple Configuration Instructions ... 4-12

4.2.3 Using Configuration Instructions with Motions.. 4-13

4.3 Using Blend Factors .. 4-15

4.3.1 PC Bit Triggering .. 4-15

4.3.2 Sequential Motion Instructions ... 4-15

4.4 Programming Pitfalls and Best Practices... 4-18

4.4.1 Incomplete AOI Executions .. 4-18

4.4.2 DN BIT Checking.. 4-20

4.4.3 Reused Control Variables... 4-21

4.4.4 Task Overlaps and CPU Load.. 4-22

5 Collision Detection .. 5-1

5.1 Collision Detection Overview... 5-1

5.2 Configuring Collision Detection from the HMI.. 5-3

5.3 Using the MLxRobotCollisionDetection Instruction... 5-9

5.3.1 Initializing Collision Detection from Application ... 5-10

5.3.2 Measuring Collision Detection from Application ... 5-11

5.3.3 Changing Collision Detection Behavior during Application................................. 5-12

6 Conveyor Tracking.. 6-1

6.1 Conveyor Tracking Overview... 6-1

6.2 Conveyor Tracking Requirements ... 6-3

6.3 Configuring Conveyor Tracking ... 6-4

6.4 1756-HSC Counter Card Configuration ... 6-6

6.4.1 Wiring the 1756-HSC.. 6-6

6.4.2 Configuring the 1756-HSC in RSLOGIX... 6-6

6.4.3 Linking the Conveyor Tags for a 1756-HSC... 6-7

6.5 Conveyor Parameter Configuration for MLX200.. 6-8

6.6 Conveyor Tracking Setup Procedure... 6-10

6.6.1 Verify Counter Card is Functional... 6-10

6.6.2 Calculate Conveyor Resolution .. 6-10

6.6.3 Teach a User Frame... 6-10

6.6.4 Teach Point and Setup Tracking Parameters... 6-11
xi

168542-1CD

11 of 206

 Table of Contents

168542-1CD

MLX200 Software and
Operations
6.6.5 Debugging Pickup Position Errors .. 6-12

6.6.5.1 Part is Gripped at Different Locations on Part6-12

6.6.5.2 Part is Gripped Consistently at the Wrong Location on the Part 6-13

6.7 Developing a Conveyor Tracking Application .. 6-14

6.7.1 Conveyor Tracking Instructions ..6-14

6.7.1.1 MLxRobotConvSyncStart Instruction... 6-14

6.7.1.2 MLxRobotConvSyncStop Instruction... 6-15

6.7.1.3 MLxRobotConvSyncStopWithLinearMot Instruction.............................. 6-16

6.7.1.4 MLxRobotConvSyncStopWithAxisMot Instruction................................. 6-16

6.7.2 Programming Structure for a Conveyor Tracking Application in Ladder.............6-17

6.7.2.1 Program Structure Overview ...6-17

6.7.2.2 Program Structure Details ... 6-18

6.7.2.3 Advanced Application Options... 6-21

6.7.2.4 Conveyor Tracking Programming Pitfalls .. 6-24

7 Configuration and Maintenance of MLX200 Control Module .. 7-1

7.1 MLX200 Control Module Status Display ..7-1

7.1.1 Connecting to MLX200 Control Module Display Remotely................................... 7-2

7.2 Maintenance and Configuration Operations ..7-5

7.2.1 Logging in to Perform Maintenance Operations ...7-5

7.2.2 Changing the Password of the MLX200 Control Module......................................7-6

7.2.3 Changing the IP Address of the MLX200 Control Module 7-7

7.2.4 Rebooting the MLX200 Control Module.. 7-8

7.2.5 Retrieving Log Files .. 7-9

7.2.6 Updating Configuration and License Files ..7-10

7.2.7 BACKUP AND RESTORE OPERATIONS ... 7-12

7.2.8 Performing Firmware Update..7-14

7.2.9 Advanced Operations to Assist with Maintenance and Troubleshooting............ 7-16

7.2.9.1 Disabling Automatic Restart of MLX-R.exe ... 7-16

7.2.9.2 Manually Starting MLX-R.exe After Auto-start is Disabled 7-18

Appendix A ..A-1

A.1 MLX200 Add-on Instructions ...A-1

A.1.1 MLxAbort ..A-1

A.1.2 MLxEnable ...A-2

A.1.3 MLxHold ...A-3

A.1.4 MLxReset ...A-4

A.1.5 MLxResetAndHold ...A-5

A.1.6 MLxRestart ...A-6
xii

168542-1CD

12 of 206

168542-1CD

MLX200 Software and
Operations

 Table of Contents

A.1.7 MLxStop...A-7

A.1.8 MLxRobotMoveAxisAbsolute ...A-8

A.1.9 MLxRobotMoveAxisRelative ..A-10

A.1.10 MLxRobotMoveLinearAbsolute ..A-12

A.1.11 MLxRobotMoveLinearRelative ...A-14

A.1.12 MLxRobotMoveCircular..A-16

A.1.13 MLxRobotJogAxes...A-18

A.1.14 MLxRobotJogAxesToPoint...A-19

A.1.15 MLXRobotJogTCP ...A-20

A.1.16 MLxRobotJogTCPToPoint ...A-22

A.1.17 MLxRobotCoordinateTransform...A-23

A.1.18 MLxRobotSetBasePose...A-24

A.1.19 MLxRobotSetCubicIZByCenterPoint..A-25

A.1.20 MLxRobotSetCubicIZByTwoCorners ...A-26

A.1.21 MLxRobotSetFrameShift..A-27

A.1.22 MLxRobotSetToolProperties ..A-28

A.1.23 MLxRobotSetUserFrame ...A-29

A.1.24 MLxRobotCollisionDetection ..A-30

A.1.25 MLxRobotConvSyncStart...A-32

A.1.26 MLxRobotConvSyncStop...A-33

A.1.27 MLxRobotConvSyncStopWithAxisMot ...A-34

A.1.28 MLxRobotConvSyncStopWithLinearMot..A-36

A.1.29 MLxGetErrorDetail ...A-38

A.1.30 MLxGetModuleInfo...A-39

A.1.31 MLxReadDigitalInputs ..A-40

A.1.32 MLxWriteDigitalOutputs ...A-41

A.1.33 MLxRobotGetHomeOffsets ..A-42

A.1.34 MLxRobotSetHomeOffsets ..A-43

A.1.35 MLxRobotGetProperties...A-44

A.1.36 MLxRobotSetProperties ...A-45

A.1.37 MLxSetGlobalParameter..A-46

Appendix B ...B-1

B.1 MLX200 Control Module Performance Results and Memory Usage.................................B-1
xiii

168542-1CD

13 of 206

 Table of Contents

168542-1CD

MLX200 Software and
Operations
Appendix C ... C-1

C.1 MLX200 Control Module Error Code List .. C-1

Appendix D ... D-1

D.1 3rd Party Software Licenses Usage.. D-1
xiv

168542-1CD

14 of 206

1 Introduction
1.1 Requirements

168542-1CD

MLX200 Software and
Operations
1 Introduction

The MLX200 Control Module from Yaskawa provides an easy way to
develop PLC-based robotic solutions. Programming of the MLX200 is
performed entirely using RSLogix 5000 from Rockwell Automation
through the use of a set of RSLogix 5000 Add-on Instructions (AOIs) for
Robot Motion and Configuration. These instructions are compatible with
the ControlLogix, CompactLogix and GuardLogix families of
Programmable Automation Controllers (PAC) from Rockwell Automation.
This guide will provide a step-by-step description of how to configure,
develop, deploy, and maintain applications using MLX200 Control Module.
Table 1-1 "MLX200 Control Panel Components and Terminology" shows
the various components that are contained within the MLX200 package.

1.1 Requirements

1.1.1 Rockwell Automation PAC/PLC requirements for the MLX200:

• Hardware Requirements

– 1756 ControlLogix Chassis and Power supply

– 1756 ControlLogix/GuardLogix safety controller with 1756-ENBT
EtherNet/IP module

– 1769 CompactLogix controller with built-in Ethernet/IP.

– 1 MB of available memory on PLC

• Development PC Requirements

– Windows XP or 7 32/64 bit on a PC with 4 GB RAM

• Software Requirements

– RSLogix 5000 V20

– FTView ME Station version 6.1, 30 Display Activation
(note: MLX-HMI has 30 screens - a larger activation may be
necessary if integrating into a larger HMI)

– Fuji's V-SFT development environment (version 5.4.33.0) for
optional MLX-HMI for Fuji Monitouch panels.

Table 1-1: MLX200 Control Panel Components and Terminology

MLX200 Control
Module Development
Software (MLX-D)

Add on instructions, data types, HMI screens
(referred to as MLX-HMI), examples, etc. for
RSLogix 5000 and FTView. An MLX200 user
programs their application using the MLX-D
functionality within the RSLogix 5000
environment.

MLX200 Control
Module PLC
Interface Software
(MLX-R)

Robot control firmware that is resident on the
MLX200.

MLX200 Drive Panel Hardware Drive Panel containing Servo Drives
and Safety Circuit for a given Robot Model.

MLX200 Control
Module

Stand-alone module that contains the MLX-R
firmware. This module will be mounted on the
MLX200 Drive Panel.
1-1

168542-1CD

15 of 206

168542-1CD

MLX200 Software and
Operations

1 Introduction
1.2 System Layout for the MLX200 Control Module
1.1.2 RSLogix 5000 files included with the MLX200 Control Module:

• MLX200_ControlLogix.ACD - preconfigured project for use with
ControlLogix systems

• MLX200_CompactLogix.ACD - preconfigured project for use with
CompactLogix systems

• MLX200_Import.L5X - skeleton application for importing MLX200
AOIs and User Defined Types (UDTs)

• MLX200Communications_[0-3].L5X - RSLogix task for MLX200
communications

• MLX200HMI.APA - MLX200 HMI Project File

• MLX200Conveyor_[0-3].L5X - conveyor update task (used only for
conveyor tracking)

• HMIUpdates.L5X - a RSLogix task that is needed to communicate
with the MLX200 HMI

1.2 System Layout for the MLX200 Control Module

Fig. 1-1 "MLX200 Connection System Layout" on page 1-3 shows an
overall diagram of how the system should be connected. Ethernet port 1
on the MLX200 Control Module should be connected directly to the servo
drive panel. Ethernet port 2 should be connected through an Ethernet
switch to the PC running RSLogix as well as the CompactLogix or
ControlLogix system.

CAUTION

• The Ethernet cable between the MLX Control Module and Drive
Panel must be a Shielded Twisted Pair Cat 5E cable to prevent
noise-related issues that can vary greatly due to location and
system setup. All other cables can be standard Ethernet.

• The Ethernet Switch should not be used to handle any other
network communications besides those shown in the layout. Other
network traffic could cause poor performance or loss of
communications.
1-2

168542-1CD

16 of 206

1 Introduction
1.3 Customer Support Information

168542-1CD

MLX200 Software and
Operations
Fig. 1-1: MLX200 Connection System Layout

1.3 Customer Support Information

If you need assistance with any aspect of your MLX200 Software and
Operations please contact Yaskawa Motoman Customer Support at the
following 24-hour telephone number:

For routine technical inquiries, you can also contact Yaskawa Motoman
Customer Support at the following e-mail address:

When using e-mail to contact Yaskawa Motoman Customer Support,
please provide a detailed description of your issue, along with complete
contact information. Please allow approximately 24 to 36 hours for a
response to your inquiry.

NOTE
Multiple MLX200 Control Modules can be connected to a
single Logix PLC. Fig.1-1 "MLX200 Connection System
Layout" shows a single MLX200 Control Module layout.

techsupport@motoman.com

NOTE
Please use e-mail for routine inquiries only. If you have an
urgent or emergency need for service, replacement parts,
or information, you must contact Yaskawa Customer
Support at the telephone number shown above.

(937) 847-3200
1-3

168542-1CD

17 of 206

168542-1CD

MLX200 Software and
Operations

1 Introduction
1.3 Customer Support Information
Please have the following information ready before you call:

• System MLX200

• Robots

• Positioner

• Primary Application

• Software Version Access this information on the Status
Display screen of the MLX200
Control Module. Refer to Fig. 7-1
"Status Display of MLX200 Control
Module" on page 7-1 for information
on connecting to the Status Display
screen

• Robot Serial Number Located on the robot data plate

• Robot Sales Order Number Located on the Control Module data
plate
1-4

168542-1CD

18 of 206

2 System Configuration
2.1 MLX200 Control Module

168542-1CD

MLX200 Software and
Operations
2 System Configuration

This section of the guide will provide simple steps for connecting and
configuring each component in the MLX200 system.

2.1 MLX200 Control Module

The MLX200 Control Module will come attached to the MLX200 Drive
Panel. The module comes with two RJ-45 ports (Fig.2-1 "Ethernet Ports")
that are used for EtherCAT and Ethernet communications. The module
can be powered on by turning on power to the Drive Panel (Fig.2-2
"Power Indicators"). Table 2-1 "MLX200 Control Module LED Indicators"
on page 2-6 shows the LED indicators on the MLX Control Module.

Fig. 2-1: Ethernet Ports

Fig. 2-2: Power Indicators
2-5

168542-1CD

19 of 206

168542-1CD

MLX200 Software and
Operations

2 System Configuration
2.1 MLX200 Control Module
Table 2-1: MLX200 Control Module LED Indicators
LED Color State Meaning

Power
Button

None Off Power not connected to MLX200 Control
Module

Red Solid Power connected, but MLX200 Control
Module is turned off.

Blue Solid Power connected MLX200 Control Module
running.

PWR None Off Power not connected to MLX200 Control
Module

Green Solid Power connected and MLX200 Control
Module running

HDD Orange Blinking Indicates Hard Disk activity

Ethernet 1
(EtherCAT)

Green Off Link Inactive

Solid Link Active

Orange Off Link Inactive

Blinking Link Active and data being transmitted.

Ethernet 2
(Ethernet/IP)
(TCP/IP)

Green Off Link Inactive

Solid Link Active

Orange Off Link Inactive

Blinking Link Active and data being transmitted.

NOTE The Ethernet LEDs will show “Link Inactive” if the device
they are connected to is not powered on.
2-6

168542-1CD

20 of 206

2 System Configuration
2.2 Configuring RSLogix Project

168542-1CD

MLX200 Software and
Operations
2.2 Configuring RSLogix Project

Once an MLX200 system has been connected, the next step is to start
programming it from RSLogix 5000. This section describes how to setup
an RSLogix project for MLX200 application development. There are two
main methods for doing this:

• Using pre-configured RSLogix projects. This method is the sim-
plest way to get started using MLX200 and should be used if a new
application project is going to be developed.

• Importing the MLX200 AOIs and UDTs. This method involves
importing the necessary MLX200 components into an existing proj-
ect. This method should be used if MLX200 is going to be integrated
into an existing application or project.

The following sections describe each method in detail.

2.2.1 Pre-Configured RSLogix Projects

The MLX200 package comes with two preconfigured RSLogix programs:
one for ControlLogix (MLX200_ControlLogix.ACD) and one for
CompactLogix (MLX200_CompactLogix.ACD). Follow these steps to
configure these projects:

2.2.1.1 Configuring the Logix Controller

Open the proper .ACD file in RS Logix depending on which Control
Module type you are configuring the program to use. Right-click on the
Control Module in the Control Module Organizer and select Properties.
Now, click on Change Control Module and input the proper ControlLogix
or CompactLogix controller for the system (Fig.2-3 "Control Module
Selection").

Fig. 2-3: Control Module Selection

NOTE

The CompactLogix and ControlLogix projects are
functionally equivalent. Both configurations are provided
because changing the Control Module type between
CompactLogix and ControlLogix will require re-entering the
EtherNet/IP Module Configuration settings (Refer to Section
2.2.2.3 “Adding an MLX200 Control Module to the I/O
Configuration” on page 2-11).
2-7

168542-1CD

21 of 206

168542-1CD

MLX200 Software and
Operations

2 System Configuration
2.2 Configuring RSLogix Project
2.2.1.2 Configuring an MLX200 Control Module Communication

If using ControlLogix, open the I/O Configuration in the Control Module
Organizer and verify that the correct chassis slot is selected for both the
ControlLogix module and the EtherNet/IP module. Then, right-click on the
EtherNet/IP Module, select Properties, and verify that the IP Address for
the module matches what is displayed in the alpha numeric display on the
front panel of the 1756-ENBT module for ControlLogix.

Fig. 2-4: EtherNet/IP Module Configuration

Finally, right-click on the MLX_Controller Ethernet Module, select
Properties, and verify that the IP Address matches the IP Address for the
MLX Control Module (default should be 192.168.1.200). All other settings
on this module should be preconfigured correctly.

Fig. 2-5: EtherNet/IP Module Configuration
2-8

168542-1CD

22 of 206

2 System Configuration
2.2 Configuring RSLogix Project

168542-1CD

MLX200 Software and
Operations
2.2.2 Importing MLX200 into Existing Project

This section will describe how to import a MLX200 into a new or existing
RS Logix project. If using a pre-configured project as described in Section
2.2.1 “Pre-Configured RSLogix Projects” on page 2-7, this section can be
skipped.

2.2.2.1 Import MLX200 AOIS AND UDTS

Right-click on Unscheduled Programs/Phases, select Import Program,
and navigate to the MLX200_Import.L5X file included with MLX200
package. This will import all MLX200 AOIs and UDTs into the project.

Fig. 2-6: Importing LXADKImport.L5X

NOTE
The MLX200_Import program performs no function besides
importing the AOIs and UDTs. It can be deleted from the
RSLogix project after importing.
2-9

168542-1CD

23 of 206

168542-1CD

MLX200 Software and
Operations

2 System Configuration
2.2 Configuring RSLogix Project
2.2.2.2 Creating the MLX200 Communications Task

Create a MLX200 communications task. Right-click on Tasks and select
“New Task”. Set the Type as Periodic, the Period to 2 ms, and the Priority
to 1.

Fig. 2-7: MLX200 Task Configuration

Now, right-click on the MLX200_Task, select Import Program, and
navigate to the MLX200Communications_0.L5X file included with
MLX200.

NOTE

• The Period/Priority settings are recommendations only.
These can be changed if the settings lead to interference
with other components in the system or too much CPU
utilization; however, though this will not cause any motion
control performance issues, lowering these values can
cause synchronization delays between the Logix system
and the MLX200 Robot Control Module. Appendix B.
MLX200 Performance Results and Memory Usage
contains some basic performance results for differing
values of these parameters.

• The Task Period should be set equal to or higher than the
MLX200 Robot Control Module RPI. Setting the Task
Period lower than the RPI will not improve performance
but will increase CPU load.

• When importing the communications task, you may
receive a warning that says “Calls to the following
instruction(s) exist in source that is not editable.” This
warning can be ignored.

WARNING
All MLX200 application code should be placed inside the MLX_Task.
Failure to do so could lead to unexpected behavior such as skipped
motions or motions being out or order after a Hold/Restart scenario.
See Section 3.3.1 “Task Scheduling” on page 3-9.
2-10

168542-1CD

24 of 206

2 System Configuration
2.2 Configuring RSLogix Project

168542-1CD

MLX200 Software and
Operations
2.2.2.3 Adding an MLX200 Control Module to the I/O Configuration

Next, the EtherNet/IP communications must be configured. If using
ControlLogix, first verify that the 1756 ENBT card is added to the I/O
Configuration at the correct slot. Right-click on the Ethernet module and
select “New Module”. Fig.2-8 "Adding a New Ethernet Module" shows this
for ControlLogix (left) and CompactLogix (right). Next, select Generic
Ethernet Module from the list of devices.

Fig. 2-8: Adding a New Ethernet Module

On the General tab, fill in the data as shown in Fig.2-9 "General Ethernet
Module Settings". The IP Address entered on this tab should be the IP
Address of the MLX200 Control Module (default value is 192.168.1.200).
On the Connection tab, set the RPI to 2 ms and make sure the “Use
Unicast Connection” checkbox is *not* checked.

Fig. 2-9: General Ethernet Module Settings
2-11

168542-1CD

25 of 206

168542-1CD

MLX200 Software and
Operations

2 System Configuration
2.2 Configuring RSLogix Project
Fig. 2-10: Ethernet Module Connection Settings

NOTE If using the MLX-HMI, refer to Section 3.4 “MLX-HMI” on
page 3-20 for instructions on HMI configuration.
2-12

168542-1CD

26 of 206

3 Developing with MLX200

168542-1CD

MLX200 Software and
Operations
3 Developing with MLX200

This section explains how to use MLX200 to develop robotics
applications. The first section provides an overview of the tag structure in
MLX200. The next section provides an overview of the instructions
available for configuring and controlling a robot in MLX200 as well as their
basic behavior. Finally, the screens of the MLX-HMI are introduced.

WARNING
UNEXPECTED MOVEMENT. Servo drives connected to the MLX200
Control Module may perform unexpected movements because of
incorrect wiring, incorrect settings, incorrect data or other errors.

• Interference (EMC) may cause unpredictable responses in the
system.

• Carefully install the wiring in accordance with the requirements
provided by the servo drive vendor.

• “Switch off the voltage at the inputs to the servo drives avoid an
unexpected start of the motor before switching on and configuring
the product.

• Do NOT operate the product with unknown settings or data.

• Perform a comprehensive commissioning test.

• Failure to follow these instructions can result in death or serious
injury.
3-1

168542-1CD

27 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.1 MLX200 Tag Structures
3.1 MLX200 Tag Structures

The MLX200 tag structure exists as a Control Module-scope tag labeled
MLx[]. This tag structure contains information on the overall state of the
system, properties of the MLX200 Robot Control Module and
configuration and feedback data for individual axes and robots. The
following sections describe the tag structures in detail.

3.1.1 MLx-Level Tag Structure

The MLx-level tag structure contains configuration and feedback data for
the system. It is defined as an array of size 1 by default. The size of the
MLX-level data structure array will only increase if multiple MLX200
Control modules are being configured from the same system:

• Root - under the main MLx tag, there are variables describing the
system state, error code, number of Robots, etc.

• MLxControl Module Info - describes properties of the MLX200
Control Module such as IP Address and firmware version.

• Signals - contains signals for informing the user when the system is
connected and initialized.

• Robot[] - contains information on each initialized/used robot.

Fig. 3-1: MLx-Level Tag Structure.
3-2

168542-1CD

28 of 206

3 Developing with MLX200
3.1 MLX200 Tag Structures

168542-1CD

MLX200 Software and
Operations
3.1.2 Robot-Level Tag Structure

Each individual robot data structure contains the following information:

• Name - name of the Robot defined inside the MLX200 Configuration
File.

• ConfigurationData - contains properties of the robot kinematics
such as TCP speed and acceleration. This data is configured is read
from the MLX200 Configuration File and populated automatically
during system initialization.

• CubicIZStatus - contains status for any Cubic Interference Zone (IZ)
violations. The bit corresponding to the ZoneID will be high for any
violated zones. See A.18 and A.19 for more information on
Interference Zones.

• RobotAxes[] - contains information on each individual robot axis.
The data for each axis is the same as described in Section 3.1.3
“Axis-level Tag Structure” on page 3-4.

Fig. 3-2: Robot-Level Tag Structure
3-3

168542-1CD

29 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.1 MLX200 Tag Structures
3.1.3 Axis-level Tag Structure

Each individual robot axis data contains the following information:

• AxisName - name of the Axis in the format “[RobotName]-Axis[n]”.

• ConfigurationData - contains properties of the axis kinematics such
as position, velocity, and acceleration limits.

• ServoData - contains properties of the servo drive such as Pulse
(Encoder Counts) Per Position Unit and maximum allowed following
error.

• Feedback - contains real-time feedback of Commanded position as
well as one user-defined feedback data type. By default, the user-
defined feedback data will be Actual (HW) Position - use the
MLxSetRobotProperties instruction to change this data type.

Fig. 3-3: Axis-level Tag Structure.
3-4

168542-1CD

30 of 206

3 Developing with MLX200
3.1 MLX200 Tag Structures

168542-1CD

MLX200 Software and
Operations
3.1.4 Application Data Tag Structure

The Application Data structure is a Control Module-Scope structure that
contains the application data (Teach Points, Tools, IZs, etc…) for a given
project. The MLX200 HMI (described in Section 3-4 “MLX200 Tag
Structures” on page 3-5) will automatically link to this structure when you
Teach Points or enter Tool/UF/IZ Data from the HMI. The overall data
structure is shown in Fig.3-4 "Application Data Tag Structure".

Fig. 3-4: Application Data Tag Structure

The Application Data structure is designed to be configured so that a user
can extend or contract the amount of data stored in it based on the
application needs and available Control Module Memory. To change the
size of the Application Data requires two steps:

1. Change the variable corresponding to the type of data.

2. Change the array size of the UDT corresponding to the type of data

For example, Fig. 3-5 "Changing the Size of the
ApplicationData.NumberOfJobs Variable" on page 3-6 and Fig. 3-6
"Changing Size of the MLxAppDataJob UDT" on page 3-6 show changing
the number of Jobs from the default value of 10 to 20.

WARNING
Failure to match the length of the arrays with their corresponding size
variable can allow an out-of-index array which will cause the Control
Module to fault.
3-5

168542-1CD

31 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.1 MLX200 Tag Structures
Fig. 3-5: Changing the Size of the ApplicationData.NumberOfJobs
Variable

Fig. 3-6: Changing Size of the MLxAppDataJob UDT

NOTE
If the size of these arrays/variables is changed, the HMI
must be shutdown and restarted to have the changes take
affect.
3-6

168542-1CD

32 of 206

3 Developing with MLX200
3.2 Instruction Overview

168542-1CD

MLX200 Software and
Operations
3.2 Instruction Overview

This section provides an overview of the MLX200 instructions and a brief
description of each one. The first section describes system level
instructions for changing system state, retrieving error messages, etc.
Then, the Robot-specific Configuration and Motion instructions are
described. More detailed descriptions of these instructions can be found in
Appendix A.

3.2.1 System Commands

Table 3-1 lists the system commands available in MLX200. The interaction
between the state instructions (MLxAbort, MLxReset, etc) and the state of
the system is shown in Fig. 3-7 "State Management with MLX200
Instructions" on page 3-7.

Table 3-1: MLX200 System Commands

Fig. 3-7: State Management with MLX200 Instructions

AOI Name AOI Description

MLxEnable Enable all configured drives

MLxAbort Abort all configured drives (controlled stop followed
by servo off)

MLxStop Stop all configured drives (controlled stop with servos
staying on) and clear the motion queue

MLxHold Stop all configured drives (Control Module stop with
servos staying on) while maintaining the motion
queue

MLxRestart Restart the system along current path and motion
queue from the Held state

MLxReset Reset faults on all configured drives and clears
motion queue

MLxResetAndHold Reset faults on all configured drives while maintaining
motion queue

MLxGetErrorDetail Retrieve detailed error message from system

MLxGetModuleInfo Retrieve information on the MLX200 Control Module
configuration

MLxReadDigitalInput Read digital input state on single axis

MLxWriteDigitalOutput Write digital output state on single axis

MLxSetGlobalParameter Set a global parameter for MLX.
Valid values: 0 - Global Speed Scale.
3-7

168542-1CD

33 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.2 Instruction Overview
3.2.2 Robot Commands

The MLX200 Robot commands are used to move and configure robots. All
of these commands start with the prefix “MLxRobot” and are divided here
into Configuration Commands (Table 3-2 "MLX200 Robot Configuration
Instructions") and Motion Commands (Table 3-3 "MLX200 Robot Motion
Instructions").

Table 3-2: MLX200 Robot Configuration Instructions

Table 3-3: MLX200 Robot Motion Instructions

AOI Name AOI Description

MLxRobotCoordinateTransform Transform Robot Axis Positions to TCP
Positions (and vice versa) and convert
TCP position between World and User

MLxRobotGetProperties Read the configured parameters (limits,
speeds, accel/decel) for robot

MLxRobotSetProperties Set the base position of the robot relative
to the World Frame

MLxRobotSetBasePose Set the Tool Offset for the TCP position
of the robot

MLxRobotSetToolPose Set the active user frame for the robot

MLxRobotSetUserFrame Set the active user frame for the robot by
supplying Origin, XX, and XY positions

MLxRobotSetUserFrameByPoints Set a constant offset to be used on target
position

MLxRobotSetFrameShift Set the current robot position to the
home position

MLxRobotSetHomeToCurrent Define a Cubic Interference Zone with a
center point and dimensions

MLxRobotSetCubicIZByCenterPoint Define a Cubic Interference Zone by
providing two cube corners

MLxRobotSetCubicIZByTwoCorners Write digital output state on single axis

MLxRobotCollisionDetection Turn on/off and configure Collision
Detection

AOI Name AOI Description

MLxRobotMoveAxisAbsolute Move robot to target absolute position
using PTP motion

MLxRobotMoveAxisRelative Move robot to relative position using PTP
motion

MLxRobotMoveLinearAbsolute Move robot to target absolute TCP
position using linear motion

MLxRobotMoveLinearRelative Move robot to relative TCP position using
linear motion

MLxRobotMoveCircular Move robot through two target positions
using a circular motion

MLxRobotJogAxes Jog the individual axes of the robot

MLxRobotJogTCP Jog the TCP position of the robot

MLxRobotJogAxesToPoint Jog the individual axes of the robot to a
target position

MLxRobotJogTCPToPoint Jog the TCP of the robot to the target
position.
3-8

168542-1CD

34 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
3.3 Programming Introduction

This section goes into more detail about the method of programming using
MLX200. First, the status bits and execution life cycle of the MLX200
instructions are detailed. Then, a simple programming structure that can
be used to build applications is described. The basic motion parameters
common to the motion instructions are described here as well.

3.3.1 Task Scheduling

Fig. 3-8: Task Scheduling

Any MLX200 Application code should be
placed inside the MLX_Task function and
not inside the MainTask (Fig.3-8 "Task
Scheduling"). This will allow for
synchronization between the MLX
Communications Task and the Application
Code. Failure to place the application
code inside the MLX_Task could lead to
unexpected behavior such as skipped
motions or motion being out or order after
a Hold/Restart scenario.

3.3.2 Instruction Execution and Status Bits

Each MLX200 instruction has several status bits that will update while the
instruction is executing and provide information that can be used to control
the application logic. The state management (e.g. MLxAbort, MLxEnable)
instructions and configuration (e.g. MLxAxisReadProperties,
MLxRobotSetBasePose) instructions have three status bits:

• Sts_EN - Turns on when the instruction rung is enabled

• Sts_DN - Turns on when the instruction has finished executing

• Sts_ER - Turns on if the instruction causes an error

The motion instructions have additional bits that will report the status of a
motion throughout its processing and execution (i.e. movement).

• Sts_EN - Turns on when the instruction rung is enabled

• Sts_DN - Turns on when the MLX200 Robot Control Module has
acknowledged the motion command and motion has been queued

• Sts_IP - Turns on and stays on during motion processing and
execution

WARNING
Failure to place MLX200 application code inside the MLX_Task could
lead to unexpected behavior such as skipped motions or motions being
out or order after a Hold/Restart scenario.

NOTE For these status bits to report correctly the motion AOI rung
should be enabled throughout the entire motion execution.
3-9

168542-1CD

35 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.3 Programming Introduction
• Sts_AC - Turns on when motion begins executing and off when
motion completes

• Sts_PC - Turns on when motion execution is complete

• Sts_ER - Turns on if the instruction causes an error

Fig.3-9 "MLX200 Motion Instruction Execution" shows a detailed timeline
of the status bit behavior throughout the lifecycle of a motion instruction.

Fig. 3-9: MLX200 Motion Instruction Execution1)

3.3.3 State Management and Configuration Instructions

State management and configuration instructions can be executed on a
rung of ladder with the “.Sts_DN” bit used to determine when the
instruction has been completed. For example, consider the rung of ladder
shown in Fig.3-10 "Example State Management Instruction". A single bit
called “triggerEnable” is used to execute the instruction and a control
variable of name “enableServos” is passed into the MLxEnable
instruction. Then, the enableServos.Sts_DN bit is checked to determine
that the execution has completed.

Fig. 3-10: Example State Management Instruction

1 Note: Fig.3-9 "MLX200 Motion Instruction Execution" describes the behavior of
the status bits when the rung is enabled until it is disabled. The Sts_PC will
remain on after the rung is disabled until the next time the rung is enabled.
3-10

168542-1CD

36 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
The same structure can also be used to execute configuration instructions
such as setting base poses or interference zones.

3.3.4 Motion Instructions

The MLX200 motion instructions will make up the bulk of most
applications. One simple way to use the motion instructions is to treat
every rung of ladder as a “step” and then move to the next step when the
motions have finished executing (i.e. the Sts_PC bit turns on). An example
of this is shown in Fig.3-11 "Example Ladder Rung of Simple Motion". The
rung-in condition here checks whether the variable “step” is 10 and then
calls an MLxRobotMoveAbsolute with the control variable “moveHome[0]”
when this condition is true. Then, it waits for the moveHome [0].Sts_PC to
turn on and moves to the next step of the ladder.

Fig. 3-11: Example Ladder Rung of Simple Motion

NOTE

• Configuration instructions that affect program behavior
(such as base pose, tool pose, interference zone, etc)
should be executed during application initialization as
these values will not hold over when the MLX200 Robot
Control Module is restarted.

• Every MLX200 instruction takes an MLxData parameter.
By default, this parameter should always be MLX[0]. If
using multiple MLX200 Control Modules, this parameter
is used to send the command to the proper MLX200
Control Module.

NOTE
It is often useful to define the control variables as arrays for
motion instructions that will be used often in the program.
This will cut down on the number of program variables and
make the program easier to read.
3-11

168542-1CD

37 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.3 Programming Introduction
Multiple instructions can be placed on the same rung as shown in
Fig.3-12 "Multiple Motion Instruction On". If commanding multiple motions
for the same Robot, these motions will be internally queued. Up to 25
motions can be queued (all Axis and Robots combined) in the system at
one time. See Chapter 4 "MLX200 Programming Guide" for more detailed
guide for programming the MLX200.

Fig. 3-12: Multiple Motion Instruction On

3.3.4.1 Speed, Acceleration, Jerk Parameters

Every MLX200 Motion Instruction will take parameters defining the speed,
acceleration and jerk parameters for the motion. For all axis motions (e.g.
MLxRobotMoveAxisAbsolute) parameters are defined in % of maximum.
For linear motions, the acceleration and jerk parameters are always
defined in % of maximum while the Speed can be defined by % of
maximum or in absolute values (mm/sec) depending on the SpeedUnits
parameter (0 = % maximum, 1 = absolute). For a full list of parameters for
each instruction, refer to Appendix A "".

3.3.4.2 Trajectory Shape

The Trajectory Shape parameter allows a user to define the shape of the
velocity profile. The valid values are:

• 0, Trapezoidal Profile - in this profile, the acceleration and
deceleration are constant values during the ramp-up and ramp-down
portion of the motion. This provides the fastest motion possible, but
is also the least smooth profile. This profile should be used in time-
critical applications where the inertia/load of the system is low
3-12

168542-1CD

38 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
• 1, S-Curve Profile - in this profile, the acceleration profile has a
sine-wave shape with the maximum acceleration being reached at
its peak. This will provide a smoother ramp-up and ramp-down
portions of the motion.

• 2, Jerk-Limited Profile - in this profile, a trapezoidal shape is defined
at the acceleration level using the Maximum Jerk values. This
provides similar smoothness to the S-Curve profile, but allows the
user more freedom in shaping the profile by adjusting the jerk
parameters as well as the acceleration and deceleration.

3.3.4.3 Blend Factor

The Blend Factor parameter is used to define at what point a motion
should begin to blend into the next queued motion. The valid values for
this are 0-8 with 0 defining a motion that stops at the trajectory segment
end point and 1-8 using distances defined inside the MLX200 Robot
Configuration files. Fig. 3-13 "Example of Blend Factor Effect on Motion"
on page 3-14 shows a graphical representation of how increasing Blend
Factor affects the shape of the trajectory.

NOTE
Robots that have the Dynamic Trajectory Optimization
feature will ignore the Trajectory Shape parameter and use
an internally optimized trajectory shape.

NOTE
Blend Factor only applies to Robot Motions and the blend
distances are defined as the Cartesian Distance from TCP
to trajectory end point.
3-13

168542-1CD

39 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.3 Programming Introduction
Fig. 3-13: Example of Blend Factor Effect on Motion

3.3.5 Coordinate Frames Relevant to Robotics

There are several coordinate frames (i.e. “frames of reference”) that are
important to understand when programming a robot in a workcell.

• World Frame - is the base coordinate frame (defined in Cartesian
space (X,Y,Z)) of the overall workcell. The position of any object in a
workcell (robots, conveyors, pallets, etc) is defined in this frame.

• Robot Frame - is the location of the base of the robot defined in
World Frame coordinates. Positions defined in the Robot Frame will
be relative to the base of the robot instead of the World Frame. This
can be seen in Fig.3-15 "Robot Frame vs. World Frame" where the
TCP reported in the Robot Frame will be offset from the TCP
reported in the World Frame. By default, the Robot Frame and World
Frame are setup to coincide but can be changed with the
MLxRobotSetBasePose instruction.
3-14

168542-1CD

40 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
Fig. 3-14: Robot Cell with Coordinate Frames

Fig. 3-15: Robot Frame vs. World Frame

• Tool Frame - is a frame attached to a given tool (defaulting to the
tool plate). This is useful for defining motions (jogging, incremental
motions) relative to the tool axes. For example, a user may wish to
move a drill relative to the drilling axis regardless of its location/
orientation in the world frame. Tool frame is defined relative to the
tool plate of the robot arm. For example, Fig.3-16 "Changing TCP
after Set Tool Command" shows setting a Tool Pose of
[0,0,250,45,0,0]. The Tool Pose can be changed either through the
{Tool} Screen on the MLX-HMI or through the MLxSetToolProperties
instruction.
3-15

168542-1CD

41 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.3 Programming Introduction
Fig. 3-16: Changing TCP after Set Tool Command

• User Frame - is a user defined frame usually attached to some
object in the workcell (for example, a pallet in Fig.3-14 "Robot Cell
with Coordinate Frames"). This allows a user to program motions
relative to this location. User Frames are an absolute offset from the
Base Pose (Robot Frame) of the robot. For example, if your Base
Pose offset is (100,0,0) from the world frame and you define a User
frame at (0,100,0) the origin of your user frame is at (100,100,0) from
the world frame. A User Frame can be set either through the {User
Frame} screen on the MLX-HMI or the MLxRobotSetUserFrame
instruction.

3.3.6 Jogging Motions

The MLX200 Jog instructions work slightly differently from the planned
motion instructions. First, they require the MLX200 Drive Panel to be set
to Manual (Teach) Mode before these instructions will execute. This can
be checked by looking at the MLX[].Signals.ManualMode tag in RSLogix.

Second, jogging instructions must be continually called for the motion to
continue. If a jog instruction were called and then disabled when the
Sts_DN bit turned on, the Robot would only move a small amount.
However, if the rung remains active, the directions and speeds can be
changed dynamically as from an HMI or other device and continuous
motion can be achieved. One caveat in this approach is that other
commands cannot be called while the jog instruction has the focus. Thus,
to run other commands, the jogging instruction must be temporarily
disabled.

NOTE

• The {Teach} Screen on the MLX-HMI provides all forms
of jogging and it is recommended that a user use this
HMI rather than calling the Jog Commands directly from
application logic. For more information on the, see
Section 3.4.6 “Teach Screen”.

• The MLxAbort command does not have this limitation
and will work even when a jogging instruction has focus.
3-16

168542-1CD

42 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
3.3.7 Error Messages

In the case of an error, the system will abort and then report an error code
to the MLx[].SystemErrorCode variable. This error code will map to the
errors listed in Appendix C. If using the MLX-HMI, there should also be a
detailed error message displayed on the {HMI} screen. If not, the
MLxGetErrorDetail instruction can be used to populate a variable of type
MLxErrorDetail. This object will contain detailed error messages as well as
information on how to recover from and avoid the error. An example for a
position limit error is shown in Fig. 3-17

Fig. 3-17: Example Detailed Error Message

Table 3-4: MLxErrorDetail Parameters

3.3.8 Stopping and Recovering Robot Motion

There are multiple ways to stop a robot's motion either from the MLX-HMI,
the application logic using the MLX state commands (e.g. MLxAbort) or
the MLX200 Drive Panel. The motion can be “aborted” by pressing the
[ABORT] button the HMI, calling MLxAbort, by pressing in the
[EMERGENCY STOP] button on the control panel, or by opening the
Guard Circuit on the control panel. The robot motion can be “held” by
pressing the [HOLD] button on the HMI or calling the MLxHold instruction.
Finally, the robot motion can be “stopped” by pressing the [STOP] button
on the HMI or using the MLxStop instruction. The following sections
describe the behavior of each of these and the different recovery methods
for each.

errorNumber The MLX error number

OEMerrorNumber OEM Error number if error code comes
from 3rd party device (Servo Drive, I/O
Module, etc)

Origin 0 = MLX200 Control Module,
1 = Servo Drive

Type 0 = Alarm/Fault, 1 = Warning

Recovery 0 = No Action Required, 1 = Software
Reset Required, 2 = Hardware Reset
(System Restart) Required

Message Basic Error Message

ExtendedDescription1 Extended error description

ExtendedDescription2 Extended error description (continued)

Remedy Description of how to troubleshoot and
prevent error.
3-17

168542-1CD

43 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.3 Programming Introduction
3.3.8.1 Aborted Motions

A motion is aborted by pressing the [ABORT] button, calling the MLxAbort
instruction, pressing the [EMERGENCY STOP] on the control panel, or
opening the Guard Circuit on the control panel. When aborting, the robot
will stop immediately and servos will be disengaged. The stop is a
controlled category 1 stop (i.e. the robot is decelerated to a stop along its
path before servo power is removed).

After stopping, the system will be in the ServosOffAborted state. There are
two methods to recover from this state: pressing Reset (MLxReset) or
pressing ResetAndHold (MLxResetAndHold). If pressing Reset, any
motions left in the queue will be flushed. In this case, the program step
should be reset, so that the program can restart from the beginning. If
pressing ResetAndHold, the motions in the queue are held so that the
program can start from where it left off. In this case, the program step
should not be reset so that the same instructions are active after pressing
START again.

3.3.8.2 Stopped Motions

By pressing the [Stop] button on the HMI or by calling the MLxStop
instruction, the robot will come to a Control Module stop but stay in the Idle
state (i.e. servos will still be enabled). This can be used to stop the robot's
current action and command it to do some other task. It is again up to the
application developer to make sure the program step is correct during this
operation.

CAUTION

The ABORT functionality provided in the MLX-HMI and the MLxAbort
instruction should not be used for emergency stopping of the robot. The
[EMERGENCY STOP] button that is hardwired in to the control panel
should be used for this purpose and for any safety related interlocks.

NOTE
It is up to the application developer to handle the program
step correctly when restarting the application depending on
the use of Reset or ResetAndHold.

NOTE

In this case that a motion is stopped while the robot is
currently blending between two motions, the robot will stop
along its current tangent direction. After restarting, it will
move to its next commanded point but will not follow the
exact path it would have if it had not been stopped.
3-18

168542-1CD

44 of 206

3 Developing with MLX200
3.3 Programming Introduction

168542-1CD

MLX200 Software and
Operations
3.3.9 Using Global Speed Scale

The MLxSetGlobalParameter instruction can be used to set a global
speed scale for the system by passing ParameterType=0 and
ParameterValue= (% maximum, 5-100). After this instruction is executed,
all subsequently queued motions will be slowed by the defined percentage
(e.g. if ParameterValue = 50, all motions will be performed at half speed).
This is useful to lower speeds for debugging an application or to reduce
speeds at a running application based on some input such as a light
curtain. Note that this instruction will only affect motions that are queued
after the instruction has completed. We recommend calling MLxHold-
>MLxSetGlobalParameter->MLxRestart to slow down current motions.
This will stop the current motions and then restart them at lower speeds.
You can also use the Robot Info HMI screen to change the Speed Scale.
When pressing the “Update Speed Scale” button, an MLxHold-
>MLxSetGlobalParameter->MLxRestart sequence executes
automatically.

Fig. 3-18: MLxSetGlobal Parameter Instruction
3-19

168542-1CD

45 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
3.4 MLX-HMI

The MLX-HMI includes {HMI} screens that provide a graphical mean for
interacting with Robots and the data tables associated with MLX200. The
{HMI} screens provide a resolution of 640x480 pixels. The screens are
provided as an FTView Studio archive file (*.apa). This file contains the
complete MLX HMI development environment and available to integrate
the MLX-HMI into a larger HMI.

The following sections will describe how to set up the HMI, and the layout
of the various screens.

3.4.1 Setting Up the HMI

The MLX-HMI consists of three parts: an RSLogix task which handles
communications with the HMI, an Application Data structure that is used
to store data, and the FactoryTalk HMI project.

CAUTION

When integrating the {MLX-HMI} screens into another HMI, DO NOT
change any of the tags, {HMI} screens, or object layouts that are used
in the MLX200 Robot {HMI} screens. Use of these screens is on an
AS-IS basis.

NOTE

If using one of the pre-configuring RSLogix project files (as
described in Section 2.2.1 “Pre-Configured RSLogix
Projects” on page 2-7), the HMI Task and Application Data
structure will already be present in the project. In this case,
skip to Section 3.4.1.3 “Running the FTVIEW HMI
Application”.
3-20

168542-1CD

46 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.1.1 Importing the MLx-HMI Task

The first step to set up the HMI is to create the MLx_HMITask inside the
RSLogix Project. To do this, right-click on Tasks in the Control Module
Organizer and select “New Task”. Then, enter the task properties as
shown in Fig.3-19 "MLx_HMITask Properties".

Fig. 3-19: MLx_HMITask Properties

Next, right-click on the task, choose “Import Program”, and select the
provided HMIUpdates.L5X file. After importing the task, it should appear in
the Control Module Organizer as shown in Fig.3-20 "HMI Task in Control
Module Organizer".

Fig. 3-20: HMI Task in Control Module Organizer

NOTE

The Period of 20 ms and Priority of 10 are recommended
default settings. The Period and Priority could be made
lower if the responsiveness of the HMI (particularly while
jogging) seems slow, but this will increase the CPU Load.
Similarly, the Period and Priority could be made higher if
CPU resources are scarce, but this may lead to some lag or
poor performance (particularly while jogging).
3-21

168542-1CD

47 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
3.4.1.2 Importing MLxApplicationData

 The next step is to add a Control Module scope tag of type
MLxApplicationData to the project. Right-click on Control Module Tags in
the Control Module Organizer, and select “New Tag”. Enter
“MLxApplicationData” as the Data Type and “ApplicationData” as the
Name. This variable should now appear in the Control Module Tags as
seen in Fig.3-21 "ApplicationData Tag Structure". The integer values
(NumberOfJobs, NumberofTools, etc) are used by the HMI to determine
the range of allowed indices of this value. These integer values must
correspond to the actual array lengths (e.g. NumberOfJobs is 10 here and
the length of the AxAppDataJob[] array is also 10). These array lengths
can be modified if more or less data is required; however, the integer
values must also be changed to match. Failure to do this could allow an
out-of-index array access from the HMI which will cause the Control
Module to fault.

Fig. 3-21: ApplicationData Tag Structure

3.4.1.3 Running the FTVIEW HMI Application

After the Task and the ApplicationData have been added, the HMI project
file can be opened in FactoryTalk View Studio and executed. The following
sections will discuss the various screens on the HMI.

CAUTION

Failure to match the length of the arrays with their corresponding size
variable can allow an out-of-index array which will cause the Control
Module to fault. See Section 3.1.4 “Application Data Tag Structure” for
more information on configuring the size of the Application Data.

NOTE

If this size of these arrays/variables is changed, the HMI
must be shutdown and restarted to have the changes take
affect. See Section 3.1.4 “Application Data Tag Structure”
for more information on configuring the size of the
ApplicationData.
3-22

168542-1CD

48 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.2 Main Screen

The {Main} screen (Fig.3-22 "MLX200 Robot HMI Main Screen") is the
{Start-up} screen for the HMI. This screen contains the following
components:

• Indicators for when the MLX200 Control Module is initialized and
connected

• Buttons to control the state of the system (Enable, Reset, Hold,
Abort, etc…) along with an indicator for the current state. Only the
buttons relevant to the current state will be displayed on the HMI. For
example, Fig.3-22 "MLX200 Robot HMI Main Screen" shows the
buttons available in the Idle state.
Fig.3-24 "Full Display of State Management Buttons" shows a list of
all of the various state buttons.

• A [Menu] button that overlays the Navigation Menu (Fig.3-25
"MLX200 Robot HMI Menu Selection") that can be used to navigate
to the other {HMI} screens.

• A Key Switch indicator displaying whether the system is in Automatic
or Manual Mode

• A [Release Limits] button that allows temporarily bypassing the
software limits configured for the Robot.

• A [Brake Release] button that can be used to release the brakes on
the Robot

• Login/Logout buttons for HMI security

Fig. 3-22: MLX200 Robot HMI Main Screen
3-23

168542-1CD

49 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
The {Main} screen also displays alarm messages when alarms occur
during the normal operation of the system. Fig.3-23 "Main Screen with
Alarm Message display" shows an example of the {Main} screen with
alarm displayed. Clicking on the alarm message will take you to the
{Alarm} screen which displays further information about the alarm. See
Section 3.4.5 “Alarm Screen” for more information about the {Alarm}
screen.

Fig. 3-23: Main Screen with Alarm Message display

Fig. 3-24: Full Display of State Management Buttons
3-24

168542-1CD

50 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.3 HMI Menu Selection

The [Menu] button on the bottom left of the MLX-HMI is used to access all
the screens in the HMI. The visibility of the buttons in the {Menu} screen
(Fig.3-25 "MLX200 Robot HMI Menu Selection") is based on the user
credentials. When a user does not have access to a particular area of the
HMI that button is grayed out. See Section 3.4.4 “Login and Security
Settings” for more information on login and security settings.

Fig. 3-25: MLX200 Robot HMI Menu Selection
3-25

168542-1CD

51 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
• Restart MLX-R - when pressed, a confirmation box will pop-up
confirming that the user wants to restart MLX PLC Interface Software
(MLX-R). This functionality is not part of “normal” robot operation and
should only be used if the continued operation requires a restart of
the MLX PLC Interface. Setting the Home Offsets and changing the
operating mode are examples of operations that require the MLX200
process to restart. Prior to using this functionality, the user should
press [ABORT] first.

Fig. 3-26: Restart MLX-R Confirmation Screen

• Brake Release - if the logged in user has the correct permission, the
brakes of a given axis (robot or individual) can be released. See
Section 3.4.11 “Brake Release Screen”.

• Robot Configuration -the {Robot Configuration} Screen allows the
user to setup data for the robot, see Section 3.4.9 “Robot
Configuration”.

• Robot Info - the {Robot Info} Screen allows the see position and
limits information for the current robot, see Section 3.4.10 “Robot
Info”.

• IZ Status - this allows you to see the status of the interference
zones. See Section 3.4.12 “Interference Zone Status Screen” for
more information.

• Cubic IZ Setup - the two [Cubic IZ] buttons displays the respective
screens for setting up Cubic Interference Zones using two methods -
Two Corners and Center Point.

• HW Status - shows indicators for current HW signals' state
(Fig.3-27 "HW Status Screen")

Fig. 3-27: HW Status Screen
3-26

168542-1CD

52 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
• User Frame Screen - There are two methods for setting up user
frames, by coordinate or by taught points. See Section 3.4.7 “Tool
and User Frame Screens” for more information.

• Tool Screen - This allows the user to enter the properties of the tools
the robot will be using. See Section 3.4.7 “Tool and User Frame
Screens” for more information.

• Teaching Screen - This button links to the Teach Screen, see
Section 3.4.6 “Teach Screen” for more information

3.4.4 Login and Security Settings

The MLX-HMI comes with pre-defined user names and passwords. Every
screen of the HMI has a minimum required security level to access that
screen. In addition to per screen access privileges there are certain HMI
functions that are hidden to users without proper security clearance. HMI
security is based on the letters A (lowest security level) thru P (Highest
security level). For example the “operator” login can access the error log,
interact with the state manager, etc. but cannot access the {Teach}
screen. Table 3-5 lists all HMI user names and passwords that are
predefined. Table 3-6 lists all the {HMI} screens and the security level
required to access that screen.

Table 3-5: MLX200 Robot HMI Security-User Logins

NOTE

When importing the MLX-HMI into a Factory Talk
development environment the user names listed in
Table 3-5 "Changing the Size of the
ApplicationData.NumberOfJobs Variable" should be
created in the system/user area () before importing the .apa
file. If this is not done, the PLC Interface security will get
corrupted and have to be recreated. If the user logins get
corrupted or you want to change the user names then follow
the security letter access laid out in Section 3.4.4 “Login
and Security Settings”.

User Name Password Security Letter(s)

Default <no password> A

Operator OPERATOR A and B

Expert EXPERT A thru P
3-27

168542-1CD

53 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
Table 3-6: HMI Security-by Screen

The appearance of {Main} screen and the Menu selection for each logged
in user is shown in Fig.3-28 "Main Screen and Menu Selection for the
“Default” Login", Fig.3-29 "Main Screen and Menu Selection for the
“Operator” Login" and Fig.3-30 "Main Screen and Menu Selection for the
“Expert” Login".

Fig. 3-28: Main Screen and Menu Selection for the “Default” Login

HMI
Screen

FTView Security
Level A B C D E F G H I J K L M N O P

About Yaskawa 
Extended Event Description 
Hardware Status 
IZ Status 
Main Screen 
Menu 
Main Screen Abort Button 
Main Screen Reset, Enable
Button


Main Screen Jogging Mode,
Release Limit Button


Release Brakes 
MLX-R Restart Confirmation 
Robot Configuration 
Setup Cubic by Center Point 
Setup Cubic Interference Zone 
Setup Tool Properties 
Setup User Frame Point 
Teaching and Jogging 
3-28

168542-1CD

54 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
Fig. 3-29: Main Screen and Menu Selection for the “Operator” Login

Fig. 3-30: Main Screen and Menu Selection for the “Expert” Login
3-29

168542-1CD

55 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
3.4.5 Alarm Screen

The {Alarm} screen display more information about the current alarm
(error) in the system when the error is generated.

Fig. 3-31: Alarm Details Screen

The Alarm details screen also allows the user to retrieve and view queued
alarms.

Fig. 3-32: Queued Alarm Screen
3-30

168542-1CD

56 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.6 Teach Screen

The {Teach} Screen (Fig.3-33 "MLX200 Robot HMI Teach Screen") allows
the user to jog the robot in a variety of methods as well as teach positions.
A brief overview of the functionality on this screen:

• The Jogging Mode can be switched between Axis and TCP
depending on the desired mode of operation.

• In TCP mode, the Coordinate System can be chosen from World,
Tool or User.

• The Jog Speed allows four different default values for: Inch, Slow,
Medium, and Fast.

• The Job Number and Teach Point Number can be entered via the
numerical inputs, and then when the [Teach Position] button is
pressed this data will be copied and stored into the
ApplicationData.Job[x].TeachPoint[y] tag where it can later be
accessed from an application.

• The [Jog To Point] button can be used to jog to the current selected
Teach Point for touching up or replacing a previously taught position.
This button will highlight when the Taught Point is reached.

• The [Jog To Home] button can be used to jog the robot to a position
of all zeros. This button will highlight when the Home Position is
reached.

• [Release Limits] button that can be used to job the robot out of a limit
violation.

• The IZ Indicator in the bottom right can be used to track the status of
a single Interference Zone that is entered in the numeric input.

Fig. 3-33: MLX200 Robot HMI Teach Screen
3-31

168542-1CD

57 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
3.4.7 Tool and User Frame Screens

The {Tool and User Frame} screens are shown in Fig.3-34 "Tool
Properties Setup Screen" and Fig.3-35 "User Frame Setup Screen". The
functionality of these screens is similar: both allow the properties of the
Tool and User Frame to be inputted using numerical inputs (note: the User
Frame also allows the user to copy the current X,Y, and Z position of the
TCP for teaching User Frames). When the [Save Tool Data] or [Save User
Frame] button is pressed, the data entered on the HMI is copied into the
correct Tool or User Frame number inside the ApplicationData Control
Tag. Then, when the [Execute Tool Change] or [Set User Frame] button is
pressed, the Tool or User Frame is actually set on the robot.

Fig. 3-34: Tool Properties Setup Screen

Fig. 3-35: User Frame Setup Screen
3-32

168542-1CD

58 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.8 Cubic Interference Zones

The HMI offers two screens for setting Cubic Interference Zones: one for
setting a Cubic IZ by defining Two Corners (Fig.3-36 "Cubic Interference
Zone Setup using 2 Corners") and one for setting a Cubic IZ using a
Center Point and Dimensions (Fig.3-37 "Cubic Interference Zone Setup
using Center Point"). Similar to the Teach and User screens, these
screens allow data to be entered through numerical inputs, saved to the
ApplicationData tag, and executed to activate the desired Interference
Zone.

Fig. 3-36: Cubic Interference Zone Setup using 2 Corners

Fig. 3-37: Cubic Interference Zone Setup using Center Point
3-33

168542-1CD

59 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
3.4.9 Robot Configuration

The {Robot Configuration} screen (Fig.3-38 "Robot Configuration Screen")
is used to update some properties of the robot system. This screen
interacts with the RobotConfiguration subroutine in the HMI task. The
properties that can be updated are:

• Robot Base Pose

• Robot Soft Position Limits

• Robot Home Offsets

Fig. 3-38: Robot Configuration Screen

If updating the home offsets, the warning shown in Fig.3-39 "Robot
Configuration - Confirmation screen for setting home offsets." will appear
for additional confirmation.

Fig. 3-39: Robot Configuration - Confirmation screen for setting home
offsets.
3-34

168542-1CD

60 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
3.4.10 Robot Info

The {Robot Info} Screen is just a placeholder for displaying various
properties of the robot. Currently, it displays the Robot Axis and TCP
position as well as the Linear and Angular TCP limits data.

There is also a control to change the Global Speed Scale for the system.
Enter a % (5-100) into the numerical input and then press the Update
Speed Scale button. Pressing this button automatically hold the system,
change the speed scale, and then restart the system.

Fig. 3-40: Robot Info Screen

3.4.11 Brake Release Screen

The {Brake Release} screen can be used to release the brakes on any
robot axis. The screen (Fig.3-41 "Brake Release Screen") lists the
available axes for each robot. To release a brake, all the signals listed
under “Conditions Required to Release Brakes” should be green. Then,
press and hold the brake release button to release the brake.
3-35

168542-1CD

61 of 206

168542-1CD

MLX200 Software and
Operations

3 Developing with MLX200
3.4 MLX-HMI
Fig. 3-41: Brake Release Screen

3.4.12 Interference Zone Status Screen

The Interference {Zone Status} Screen (Fig.3-42 "IZ Status Screen")
shows the current violation status of each of the 32 available Cubic
Interference Zones as well as the current status of each zone: Not Active,
Two Corners, or Center Pt. When a zone is violated, its status will turn red
to indicate that the robot TCP is currently inside that zone. If no
Interference Zones are configuring, all indicators will remain neutral.

Fig. 3-42: IZ Status Screen

3.4.13 Information Screen

The Yaskawa {Information} Screen (Fig.3-43 "Yaskawa Information
Screen") can be accessed by clicking the Yaskawa logo on the {Main}
Screen. This screen contains information on the MLX Control Module IP
Address and Model as well as the firmware versions.
3-36

168542-1CD

62 of 206

3 Developing with MLX200
3.4 MLX-HMI

168542-1CD

MLX200 Software and
Operations
Fig. 3-43: Yaskawa Information Screen
3-37

168542-1CD

63 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
4 MLX200 Programming Guide

The previous sections have introduced the MLX200 data structures,
instructions, and basic HMI operation. This section will demonstrate how
to use these tools to teach positions and write MLX200 applications. The
method to do this is slightly different than on traditional Robot Control
Modules as the program itself is not developed from the teach pendant.
Instead, the MLX-HMI is used to jog the robot and teach positions, and
then these positions are accessed through a ladder program that is
developed using the MLX200 instructions in RSLogix 5000. After
describing a simple process for teaching and executing motions, the next
section will describe how to incorporate Blend Factors into your program
to reduce cycle times. Finally, some of the common best practices and
potential pitfalls from programming MLX200 are discussed.

4.1 Developing a Simple Application

This section will describe how to teach points with the MLX-HMI and then
access these points from a ladder program to perform simple point to point
motions.

4.1.1 Teaching Points with MLX-MHI

Section 3.4.1 “Setting Up the HMI” on page 3-22 introduced the
Application data structure. This structure contains an array of type
MLxAppDataJob that each contains an array of type
MLxAppDataTeachPoint. Each Teach Point contains the following
information:

• TeachPointName - optional user-description of the Teach Point

• TCPPosition - X, Y, Z, Rx, Ry, Rz position data as well as closure
information

• AxisPosition - axis position data

• UserFrameNumber - The active User Frame when the point is taught
(if not -1, the position will be converted to active user frame - see
Section xxx)

• ToolNumber - The active Tool Number when the position was taught
(used for information only)

WARNING
All MLX200 application code should be placed inside the MLX_Task.
Failure to do so could lead to unexpected behavior such as skipped
motions or motions being out or order after a Hold/Restart scenario.
See Section 3.3.1 “Task Scheduling” on page 3-9.
4-1

168542-1CD

64 of 206

4 MLX200 Programming Guide
4.1 Developing a Simple Application

168542-1CD

MLX200 Software and
Operations
All of this data will be populated when using the MLX-HMI Teach Screen
for teaching points. First, the desired Job number should be entered on
the top-left of the HMI. This will tell the system where in the
ApplicationData structure to store the points. The jog controls can be used
to move the robot into its desired position, and then the [Teach Position]
button will store the current TCP/Joint positions into the tag structure
based on which Position is highlighted. For example, Fig.4-1 "Teaching a
Point" shows teaching Job 2 TeachPoint 12
(i.e.ApplicationData.Job[2].TeachPoint[12]). After the point has been
taught, it can be accessed in the application logic as shown on the right
side.

Fig. 4-1: Teaching a Point

4.1.2 Accessing Taught Points From a Program

Once the desired points have been taught, they can be accessed through
the MLX200 Motion Instructions. Each motion instruction takes a single
Teach Point as input. It is often useful to create Aliases for points to
provide a more descriptive/readable application program (Fig.4-2
"Aliasing a Taught Point").

Fig. 4-2: Aliasing a Taught Point
4-2

168542-1CD

65 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
A recommended method of structuring a program is shown in Fig.4-3
"Example Program Structure". In this structure, each rung of the program
is given a step number. When this step is active, the motion instruction will
be sent. Then, the step value is incremented when the instruction has
completed (done by checking the Sts_PC bit). In the example shown, the
program will loop between steps 10 and 20. The step numbers are defined
to increment in 10s to allow for the insertion of additional rungs/points if
the program is expanded.

Fig. 4-3: Example Program Structure
4-3

168542-1CD

66 of 206

4 MLX200 Programming Guide
4.1 Developing a Simple Application

168542-1CD

MLX200 Software and
Operations
4.1.3 OPERATING A USER APPLICATION FROM HMI

After writing an application, it is often desirable to start and stop the
application from the provided MLX HMI. To do this, the Main Screen has a
“Start” button that is tied to the MLX[].UserStartProgram variable which
can be used to initialize the application. The “Start” button will only appear
on the screen in Idle mode, but it is generally good practice to double-
check that the state is correct before starting as shown in Fig.4-4
"Application Initialization from the MLX HMI".

Fig. 4-4: Application Initialization from the MLX HMI

After pressing the Start button from the HMI, this button will be replaced by
the “Step Pause” button (left on Fig.4-5 "Step Pause and Step Continue
Buttons") and the value of MLX[0].UserStepAndContinue will be set to 1.
When the “Step Pause” button is pressed, the “Step Continue” button will
take its place and the value of MLX[0].UserStepAndContinue will be set to
0 (right on Fig.4-5 "Step Pause and Step Continue Buttons").

Fig. 4-5: Step Pause and Step Continue Buttons

NOTE

It is also useful to have some logic to reset the program
step; however, this logic will vary from application to
application. For example, the program step could be reset
to 0 whenever the system was aborted (MLX[].SystemState
== 8) or whenever the system was reset to ServosOffReady
(MLX[].SystemState == 12). Alternatively, the program step
could be reset whenever the MLX200 Control Module was
not connected, so that the program would only reset when
the MLX200 Control Module was restarted.
4-4

168542-1CD

67 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
These buttons along with the UserStepAndContinue variable can be used
to step through an application program by writing the application as shown
in Fig.4-6 "UserProgramStepContinue Functionality in Application Logic".
Here, the application will only move to the next step if the
UserStepAndContinue variable is turned on. Thus, the application will run
normally when the Start button is pressed, but will stop at the end of the
current rung when the Step Pause button is pressed. By pressing Step
Continue, the program will start to execute normally again. Thus, toggling
this button will allow a user to step through their application code.

Fig. 4-6: UserProgramStepContinue Functionality in Application Logic

4.1.4 Teaching Points in User Frames

The previous sections described how to teach points in World
Coordinates. However, it is often useful to teach points relative to a
defined User Frame. For example, a User Frame could be attached to the
corner of a pallet and then a sequence of motions could be taught relative
to that frame. Then, the same program could be executed on another
pallet by just changing the active User Frame.

To teach points relative to a User Frame, you must first define and activate
a User Frame. A User Frame can be defined through the HMI screens
described in Section 3.4.7 “Tool and User Frame Screens” on page 3-32.
A frame can be activated either through the [Set User Frame] button on
the HMI or by a call to the MLxRobotSetUserFrame instruction. After
being activated, the User Frame number should appear in the
MLX[].Robot[].ActiveUserFrameNumber [] variable which can also be
seen from the HMI.
Fig. 4-7: User Coordinate System
4-5

168542-1CD

68 of 206

4 MLX200 Programming Guide
4.1 Developing a Simple Application

168542-1CD

MLX200 Software and
Operations
Next, jog the robot to the desired position and switch the Coordinate
System to “User”. Once in User Mode, the TCP position reported on the
HMI will switch to User Coordinates. Now, when the [Teach Position]
button is pressed, these values relative to the User Frame will be stored in
the Teach Point data structure along with the Active User Frame Number.
When this Teach Point is passed into motion instruction with
TargetType = 1, the system will move to the position relative to the active
User Frame. Thus, the target position will change if the active User Frame
is changed.

4.1.5 USING REFERENCE POSITION VALUES

In some robots, a single TCP position (i.e. position and orientation of End-
Effector) can be met by multiple axis positions. These multiple axis
positions are often referred to as “closures” but can take other forms such
as an axis with +/- 360 degree rotations. For example, Fig. 4-8 shows a 6
axis robot with two different axis configurations that lead to the same TCP
position.

Fig. 4-8: 6-Axis Robot with Different Closures

In these cases, the MLX system must be told what the expected axis
position of the robot should be. This is done using the values inside
“Closure” variable defined for each Teach Point (e.g.
ApplicationData.Job[].TeachPoint[].TCPPosition.Closure.ReferencePositi
on). When a position is taught from the MLX HMI, these values will be
automatically filled in with the current axis position and in most
circumstances will never need to be changed. Then, when performing a
linear motion to a target TCP position (TargetType = 1), the robot will
attempt to move linearly to the target position and display an alarm if the
target axis position cannot be reached through linear motion (e.g. because
of a closure switch). This check is done to prevent unexpected motions

NOTE

• The User Frame number stored in the Teach Point is
used only as a reference to the active User Frame when
the point was taught. If the User Frame number is
anything other than -1, the taught point will be converted
into the active User Frame.

• A Teach Point can be converted between World and
User coordinates using the
MLxRobotCoordinateTransform instruction.
4-6

168542-1CD

69 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
where the robot will end up at an axis configuration that is different from
the position when the user taught the point.

For systems where the TCP Positions are calculated from outside sources
such as camera systems, an all-zero Reference Position may be passed
to allow MLX to determine the best solution. This will provide a good
solution when one is available, but in certain applications it may be
desirable to force a Reference Axis position check to prevent undesired
behavior (e.g. interference with objects or cabling). The following sections
will detail several example of using this variable in different scenarios.

4.1.5.1 Example 1: 6-Axis Robot

Consider a 6-Axis robot in one of the positions introduced before
(Fig. 4-9). When the robot is jogged to this position and the Teach Position
button is pressed from the MLX HMI, the TCP Position and Reference
Position of the robot is automatically stored as shown below. Thus, by
default, these positions should match.

Fig. 4-9: Closure Example
4-7

168542-1CD

70 of 206

4 MLX200 Programming Guide
4.1 Developing a Simple Application

168542-1CD

MLX200 Software and
Operations
Next, suppose you want to command a linear motion to this position
(either from the MLxRobotMoveLinear commands or by using JogToPoint
from the HMI) from the initial positions shown in Fig. 4-10. Because there
is a change in the elbow closure for this robot, this motion is not possible
and you will see an error message similar to the one shown in Fig. 4-11.
This prevents the robot from ending up at a position other than the point it
was taught at.

Fig. 4-10: Motion with Elbow Closure Switch

Fig. 4-11: Closure Error Message
4-8

168542-1CD

71 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
However, if the final axis position is not required to be met, a user may put
an all-zero value into the Reference Position variable to tell the MLX
system to ignore final axis position mismatch. In this case, the motion will
be executed and the robot will reach the final position shown in Fig. 4-10.
Note that the TCP position of the robot matches the TCP position of the
target position in Fig. 4-12; however, the resulting axis position is different.

Fig. 4-12: Final Position with Zero Reference Position

NOTE

• If it is necessary to reach the Reference Position, an
MLxRobotMoveAxis command or a JogToPoint in Axis
mode can be used.

• Some closure switches can be reached through a linear
motion. MLX will only display an alarm if the closure
switch cannot be reached.

• If the X,Y,Z,Rx,Ry,Rz values of a teach point are
manually changed/tweaked, it is possible (though
unlikely) for the closure to switch. In this case, it is a
good practice to “reteach” the position after tweaking the
value to get the TCP and Reference Axis Position to
match.
4-9

168542-1CD

72 of 206

4 MLX200 Programming Guide
4.1 Developing a Simple Application

168542-1CD

MLX200 Software and
Operations
4.1.5.2 Example 2: 4-Axis Palletizing Robot

While the 4-Axis Palletizing robots do not have different closures within
their work-spaces, they do have a +/- 360 degree range on their T-Axis
which can lead to multiple axis solutions. In this case, the Reference
Position can be used to control how the T-Axis will move during
MLxRobotMoveLinear commands. Consider the 90 degree rotation
between two points shown in Figure 6. Here the Reference Position acts
to determine the final T-Axis solution for the robot. In this case, it will move
90 degrees to the target position.

Fig. 4-13: 90 Degree T-Axis Rotation

However, the same TCP position can be reached by rotating the T-Axis in
the opposite direction 270 degrees (+/- 360 degrees will yield the same Rz
position). Thus, this opposite rotation can be achieved by supplying the
reference position shown below.

Fig. 4-14: 270 Degree T-Axis Rotation

NOTE In the case of an all-zero Reference Position, the robot will
take the shorter rotation direction.
4-10

168542-1CD

73 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.1 Developing a Simple Application
4.1.5.3 Summary

The following table provides a brief summary of how MLX will use the
Reference Position in different scenarios. Here are some basic guidelines
for using the Reference Position variables:

• If using taught positions, keep the TCP Position and the Reference
Position up to date if TCP Positions are modified/tweaked manually.
This can be done by re-teaching the points after any modifications
are made.

• If using TCP positions from an outside source (e.g. camera), set the
Reference Position to all-zero values for initial testing. In certain
cases (for example cable interference on the T-Axis), these values
will need to be further tweaked on an application by application
basis.

• Use Axis motions whenever strict linear motion is not necessary to
prevent issues with closures or redundant T-Axis positions.

Table 4-1: Summary of Reference Position Usage

Reference Position Result

5 or 6 Axis Robots Same closure as initial position, or
a closure switch that does not
prevent linear motion

Motion successful. Final axis
position will be equal to Reference
Position if from taught positions.

Closure switch from initial position
that prevents linear motion

Motion unsuccessful, alarm
displayed.

All-zero values Motion successful. Final axis
position will be in same “closure”
as initial position.

4 Axis Palletizing Robots Non-zero values Motion successful. Final T-Axis
position will be equal to T-Axis
position in Reference Position if
from taught positions.

All-zero values Motion successful. T-Axis position
will be T-Axis that results from
shortest rotational motion.
4-11

168542-1CD

74 of 206

4 MLX200 Programming Guide
4.2 Configuration Instructions

168542-1CD

MLX200 Software and
Operations
4.2 Configuration Instructions

Configuration Instructions refer to the AOIs that modify the current state of
the robot system but are not a motion command. These include:

• MLxRobotSetBasePose

• MLxRobotSetToolProperties

• MLxRobotSetUserFrame

• MLxRobotSetCubicIZ

• MLxRobotFrameShift

4.2.1 Using Configuration Instructions

The parameters for these configuration instructions can be set/saved from
the MLX-HMI (see Section 3.3.9 “Using Global Speed Scale” on page 3-
20) for more information on using the HMI). When these parameters are
saved from the HMI, they are stored at the proper location inside the
ApplicationData tag structure and will stay resident on the PLC until they
are changed. The HMI also allows for directly executing a configuration
instruction. This is useful for testing and verifying that the parameters
have been entered correctly; however, these configuration changes will be
reset if the MLX-R application is restarted or the MLX200 Control Module
is rebooted or reset. For this reason, it is recommended that all
configuration instructions related to particular application be set during
that application's initialization routines.

4.2.2 Setting Multiple Configuration Instructions

Applications will often need to set multiple configuration instructions
during initialization. These instructions can be placed on a single rung as
shown in Fig.4-15 "Multiple Configuration Instructions". However, it is
often useful to place them on different rungs just to make the program
more readable.

Fig. 4-15: Multiple Configuration Instructions

NOTE
After saving new configuration data on the HMI, be sure to
upload all tags and save the RSLogix project to make sure
the data is saved inside the project file.
4-12

168542-1CD

75 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.2 Configuration Instructions
4.2.3 Using Configuration Instructions with Motions

The above sections have described how to set up Configuration
Instructions during your application initialization code. However, these
instructions are often required during the actual job execution (e.g. to
change the Tool Pose after picking up an object). Thus, it is important to
understand how these instructions interact. The main difference between
Motion Instructions and Configuration Instructions is that the Motion
Instructions are added to a motion queue whereas the Configuration
Instructions are executed as soon as they are scanned. Thus, in the
example code shown in Fig.4-16 "Incorrect usage of Linear Motion and
MLx Robot Set Tool Properties combined", the first Linear Motion will be
added to the motion queue and will begin executing. Then, as soon as the
SetTool is scanned, the Tool Pose of the robot will instantly change. To
prevent these Configuration Instructions from causing a change to the
robot's position while executing a motion, MLX200 will display the error
shown in Fig.4-17 "Configuration Instruction Execution Error" in this
instance. The following Configuration Instruction commands will produce a
similar alarm if placed between Motion Instructions:

• MLxRobotSetToolProperties

• MLxRobotSetBasePose

• MLxRobotSetCubicIZByTwoCorners

• MLxRobotSetCubicIZByCenterPoint

• MLxRobotSetProperties

Fig. 4-16: Incorrect usage of Linear Motion and MLx Robot Set Tool Properties combined

Fig. 4-17: Configuration Instruction Execution Error
4-13

168542-1CD

76 of 206

4 MLX200 Programming Guide
4.2 Configuration Instructions

168542-1CD

MLX200 Software and
Operations
This error can be removed by placing the SetTool as the first command on
the ladder rung as shown in Fig.4-18 "Correct Usage of Linear Motion with
Tool Change". In this case, the new Tool Pose will become active before
the Linear Motions are added to the motion queue. Alternatively, this
SetTool could be placed on its own ladder rung and the next step triggered
off of its STS_DN bit.

Fig. 4-18: Correct Usage of Linear Motion with Tool Change

NOTE

The other instructions (e.g. setting User Frames or Frame
Shifts) can be performed while the robot is executing as
they will only apply to motions queued afterwards. Thus,
these commands can be placed in-between motion
instructions.
4-14

168542-1CD

77 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.3 Using Blend Factors
4.3 Using Blend Factors

4.3.1 PC Bit Triggering

As mentioned in the previous section, the simplest way to write an
MLX200 program is to use the motion instruction PC bit to trigger the next
motion. In this structure, each MLX200 motion instruction should be
placed on its own rung of ladder. Once the motion has finished executing
(i.e. PC bit becomes high), the program will increment its step and move
onto the next ladder rung. An example of a rung of ladder using PC bit
triggering is shown in Fig.4-19 "PC Bit Triggering". This provides a very
clean and easy to read ladder program with the major disadvantage of
being that the Blend Factor parameter cannot be used to reduce cycle
times.

Fig. 4-19: PC Bit Triggering

4.3.2 Sequential Motion Instructions

To use blend factors, each motion instruction should be placed on the
same rung of ladder as shown in Fig.4-20 "Sequential Linear Motions with
Blend Factor". This is done to keep each AOI Enabled so that its status
can be properly updated until it is finished executing. In the example
below, the first motion instruction is given a Blend Factor of 4. This means
that as moveLinear[0] is executing its motion toward Job[4].TeachPoint[1]
it will begin to blend into moveLinear [1]'s motion to Job[4].TeachPoint[2].
Note that in this case, the Blend Factor for moveLinear [1] does not matter
as we are waiting for this motion to finish executing before moving to a
next step. However, if an additional motion were placed after moveLinear
[1], multiple points could be blended. In MLX200, up to 25 motions can be
queued at a. Fig.4-21 "Parallel Axis Motion Instructions" shows an
equivalent way to do this by using parallel motion instructions on the same
rung of ladder.
4-15

168542-1CD

78 of 206

4 MLX200 Programming Guide
4.3 Using Blend Factors

168542-1CD

MLX200 Software and
Operations
Fig. 4-20: Sequential Linear Motions with Blend Factor

Fig. 4-21: Parallel Axis Motion Instructions
4-16

168542-1CD

79 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.3 Using Blend Factors
Multiple motion instructions of different types can also be placed on the
same rung of ladder as shown in Fig.4-22 "Sequential Axis and Linear
Motions". In this case, 2 Axis Motions and 2 Linear Motions will be
queued, and the Axis Motion will blend into the Linear Motion using PTP
(axis) interpolation.

Fig. 4-22: Sequential Axis and Linear Motions
4-17

168542-1CD

80 of 206

4 MLX200 Programming Guide
4.4 Programming Pitfalls and Best Practices

168542-1CD

MLX200 Software and
Operations
4.4 Programming Pitfalls and Best Practices

This section will describe some potential problems and issues that can be
encountered by incorrect use of the MLX200 instructions.

4.4.1 Incomplete AOI Executions

To understand the potential pitfalls and problems that can come from
programming in MLX200, a good understanding of the basic life-cycle of a
motion instruction (AOI) is necessary. The basic steps of the AOI are:

1. When an AOI's ladder rung becomes Enabled, the EN and IP bit will
become active and all other bits will turn off. At this stage, the AOI will
secure an unused internal Buffer Index (up to 25 buffered motions
allowed) to hold the specific motion instruction parameters as well as
status information.

2. Once the hand-shaking with the MLX200 Control Module is completed
and the motion has been queued, the DN bit become active. At this
point, the internal Buffer Index is released and the instruction has
finished processing and can become disabled. However, the AC/PC
bits will only keep updating if the rung stays enabled.

3. When the motion begins executing, AC bit goes high.

4. Once the motion has finished executing, the AC bit goes low, and the
PC bit goes high.

5. When the AOI becomes disabled, the DN bit will also go low.

The caveat in this process is that the rung must be enabled until step 2
has completed and the AOI has had a chance to release its Buffer Index. If
the rung becomes disabled before the hand-shaking is complete, the
instruction will be left in an indeterminate state. A common programming
mistake that can lead to this issue is to trigger a motion instruction directly
off of an I/O signal as shown in Fig.4-24 "Motion Instruction Trigger from
an I/O Signal Correct". In this case, the application logic says to issue the
motion command as soon as the I/O signal linked to Local:1:I.Data.0 is
turned on. However, if this I/O signal only turns on for an instant or flickers
off temporarily, the motion instruction could be left in an indeterminate
state. One potential work around for this is shown in
Fig.4-23 "Motion Instruction Triggered from an I/O Signal Incorrectly".
Here, a variable called “issueMotion” is latched when the I/O signal is
turned on and then unlatched after the motion is complete. This ensures
that the instruction stays enabled throughout its execution.
4-18

168542-1CD

81 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.4 Programming Pitfalls and Best Practices
Fig. 4-23: Motion Instruction Triggered from an I/O Signal Incorrectly

Fig. 4-24: Motion Instruction Trigger from an I/O Signal Correct
4-19

168542-1CD

82 of 206

4 MLX200 Programming Guide
4.4 Programming Pitfalls and Best Practices

168542-1CD

MLX200 Software and
Operations
4.4.2 DN BIT Checking

As mentioned in the previous section, an instruction will only need to stay
enabled until its Sts_DN bit it turned on. However, there are several things
to look out for if using the Sts_DN to control application flow instead of the
Sts_PC bit. Consider the rung of ladder shown in Fig.4-25 "DN Bit
Triggering". In this example, a motion instruction is called when the
step=100 and then the step is incremented to 110 as soon as the Sts_DN
bit turns on. This ladder rung will become disabled as soon as the motion
is finished processing. In this case, the execution of the motion as well as
the internal clean-up will be handled; however, the other status bits of the
motion cannot be updated if the rung is not enabled (i.e. no Sts_AC or
Sts_PC bits). These bits should not be used to control any other logic in
the application.

Fig. 4-25: DN Bit Triggering

A second issue with Sts_DN bit triggering is that it is easy to accidentally
fill the internal motion buffer this way. The hand-shaking between MLX-D
and MLX-R will only take on the order of 10 ms, so if the application had
two rungs going back and forth based on the Sts_DN, the maximum
queue size of 25 will be reached very quickly. In this case, the error shown
in Fig.4-26 "Motion Queue Full Error" will be displayed on the HMI.

CAUTION

It is recommended that application logic is written based on the Sts_PC
bit. If using the Sts_DN bit, read this section carefully to be informed on
possible issues.
4-20

168542-1CD

83 of 206

168542-1CD

MLX200 Software and
Operations

4 MLX200 Programming Guide
4.4 Programming Pitfalls and Best Practices
Fig. 4-26: Motion Queue Full Error

4.4.3 Reused Control Variables

Another potential problem comes from reusing the control variables for an
AOI. For example, if you are triggering an MLxRobotMoveAxisAbsolute
using the control variable moveAbs[0], this variable cannot be used
anywhere else even if it is on a rung that is never active. The reason for
this is that every AOI has a special “Enable False” condition that allows it
reset its state whenever it is not enabled to be prepared for the next time it
is called. If you use the same control variable twice, it will be attempting to
execute the instruction in one location and attempting to reset the
instruction in the other. This will lead to unresponsive behavior from the
system. If an instruction is misbehaving, a quick check can be done by
right-clicking on the control variable and selecting “Cross Reference” to
see if the variable is reused anywhere else.

Fig. 4-27: Cross-Reference Variable Use

NOTE
A control variable can be reused in an UNSCHEDULED
program as long as the two programs will never be
scheduled at the same time.
4-21

168542-1CD

84 of 206

4 MLX200 Programming Guide
4.4 Programming Pitfalls and Best Practices

168542-1CD

MLX200 Software and
Operations
4.4.4 Task Overlaps and CPU Load

MLX200 is designed to run on a variety of CompactLogix and
ControlLogix platforms including several older models/processors. On
some systems, the RSLogix application can become unresponsive if
application tasks (either MLX or other tasks) are taking up too much of the
CPU Load. There are two ways to check this. The first is to right-click on
the MLX Task, select Properties, and open the Monitor Tab (Fig.4-28
"Task Overlap Count"). This page contains a “Task Overlap Count” that
tells whether the task is executing in the proper amount of time. If this
value is non-zero, go to the Configuration Tab and increase the Task
Period until all overlaps go away.

Fig. 4-28: Task Overlap Count

RSLogix 5000 also has a tool called the Logix 5000 Task Monitor Tool that
can be used to further diagnose a system. The Task Monitor Tool is an
optional item during the RSLogix installation, but can be found for
download on the Rockwell website if needed. It can be started under the
Tool Menu.

Fig. 4-29: Logix 5000 Task Monitor Tool
4-22

168542-1CD

85 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.1 Collision Detection Overview
5 Collision Detection

5.1 Collision Detection Overview

The MLX200 Collision Detection feature provides a mechanism to provide
extra protection to the robot and surrounding equipment in the case of
accidental collisions. This is done by measuring the torque “disturbance”
(i.e. difference between measured and expected torque) of each axis
during a particular application or operation. If the torque disturbance
becomes larger than a configurable maximum, the system will abort with a
Collision Detection Error (error code 528). The basic steps for configuring
and enabling Collision Detection are:

1. Start Collision Detection in Measurement Mode from either the MLX-
HMI or by directly calling the MLxRobotCollisionDetection instruction.

2. While in Measurement Mode, run the system through a typical
application cycle. While running in this mode, the system will report
back the Measured Torque Disturbance values. The application cycle
should be run for at least 30-60 minutes to provide reliable data.

3. Stop Measurement Mode from either the MLX-HMI or the
MLxRobotCollisionDetection instruction, and determine suitable
Allowable Torque Disturbance values for the application. These values
must be larger than the original Measured Torque Disturbance values
to prevent false alarms, and the sensitivity of the system can be
adjusted by increasing/decreasing the Allowable Torque Disturbance
values. A recommended starting point is Allowable Torque Distance =
Measured Torque disturbance + 15.

4. At the beginning of the application, use the
MLxRobotCollisionDetection instruction to start the system in
Execution Mode with the determined Allowable Torque Disturbance
values. Collision Detection will now be enabled until another call from
MLxRobotCollisionDetection disables it or the MLX PLC Interface
Application is restarted.

CAUTION

This function does not completely avoid damage to the peripheral
devices; moreover, it does not guarantee the user's safety.

• Make sure to prepare safety measures such as safeguarding, etc.

Failure to observe this caution may result in damage to machinery
caused by contact with the manipulator.
5-1

168542-1CD

86 of 206

5 Collision Detection
5.1 Collision Detection Overview

168542-1CD

MLX200 Software and
Operations
The following section will describe how to configure Collision Data from
the MLX HMI (Section5.2) and how to use the
MLxRobotCollisionDetection instruction (Section 5.3).

NOTE

• It is also possible to use multiple calls to
MLxRobotCollisionDetection inside a single application to
change the Collision Detection behavior during different
phases of the application (e.g. a pick/place operation).

• When in Manual Mode, the system will use a default
Allowable Torque Disturbance value. This will be enabled
whenever Collision Detection is running.
5-2

168542-1CD

87 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.2 Configuring Collision Detection from the HMI
5.2 Configuring Collision Detection from the HMI

Fig. 5-1 shows the main {Collision Detection Configuration} screen. This
screen has buttons for starting/stopping Measurement Mode as well as
displays the current Measured and Allowable Torque Disturbance values.
At the top, a Collision "File" can be selected which corresponds to the
index inside the ApplicationData.CollisionDetect[] data structure where the
current data will be stored. As the process of measuring and configuring
Collision Detection is executed, the data will automatically be stored
inside this data structure which will allow re-use in the application.

Fig. 5-1: Collision Detection HMI Screen
5-3

168542-1CD

88 of 206

5 Collision Detection
5.2 Configuring Collision Detection from the HMI

168542-1CD

MLX200 Software and
Operations
To begin configuring Collision Detection, first select the File # to store the
data and give it a name. Here, File #2 is used and given the name
“VacuumGripper1”. Then, press the [Start Measurement Mode] button
(Figure 2) and begin running the system through the desired application
cycle. An extra pop-up window will show up after pressing [Start
Measurement Mode] button as a reminder that the tool mass properties
must be set before beginning measurement to ensure correct
measurement data.

Fig. 5-2: Start Collision Detection in Measurement Mode

CAUTION

To get accurate data during Measurement Mode, the tool load must be
entered and activated from either the {Tool Properties HMI} screen or
the MLxRobotSetToolProperties instruction.

CAUTION

 Tool Load must not exceed rated values for the robot.
5-4

168542-1CD

89 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.2 Configuring Collision Detection from the HMI
After starting Measurement Mode, the [Start Measurement Mode] button
will be grayed out and the “CD Status” indicator on the right part of the
screen will update to display “Measurement Mode” as shown in Fig. 5-3.
While the application is executing, the numerical values under the
“Measured Max Torque Disturbance” will begin to automatically update.
These values usually become fairly stable after a few application cycles,
but it is recommended to run the cycle for 30-60 minutes to get reliable
data.

Fig. 5-3: Collision Detection in Measurement Mode

After measuring the torque disturbance values, press the [Stop
Measurement Mode] button and the CD Status should change back to
“Inactive”. The next step is to fill in the Allowable Max Torque Disturbance
values based on the measured values. This can be done either by
manually entering values into the numerical inputs under Allowable Max
Torque Disturbance or by using the [Copy Measured to Allowable with
Offset] button. In Fig. 5-4, this offset value is set to 10 and the Allowable
Disturbances are all then set to 10 higher than the Measured
Disturbances. Note that these same values will also be stored inside the
ApplicationData structure as shown in Fig. 5-5. After setting the Allowable
Disturbance values, the [Start Collision Detection] button can be pressed
to start running Collision Detection.

NOTE

If the speeds or accelerations of the application are
changed after configuring Collision Detection, the
configuration may not be reliable. It is recommended to
re-configure Collision Detection if changes to motion
profiles are made.
5-5

168542-1CD

90 of 206

5 Collision Detection
5.2 Configuring Collision Detection from the HMI

168542-1CD

MLX200 Software and
Operations
Fig. 5-4: Set Allowable Torque Disturbance Values

Fig. 5-5: Collision Detection Application Data
5-6

168542-1CD

91 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.2 Configuring Collision Detection from the HMI
After starting Collision Detection, there will be three changes to the HMI
screen:

1. The CD Status will change to “Execution Mode”

2. The “Active File” will be updated to display the current Collision File
being executed. These values can also be viewed at
MLX[].Robot[].ActiveCollisionFile.

3. A [Stop Collision Detection] button will be visible which can be used to
turn off Collision Detection (e.g. in the event that a robot gets stuck in a
collision state).

Fig. 5-6: Collision Detection in Execution Mode
5-7

168542-1CD

92 of 206

5 Collision Detection
5.2 Configuring Collision Detection from the HMI

168542-1CD

MLX200 Software and
Operations
Now, any time the system detects a collision, the system will abort. Fig.
5-7 shows the Collision Detection Screen in the case of a collision, and
Fig. 5-8 shows the detailed error description in this case.

Fig. 5-7: Collision Detection Screen in collision state

Fig. 5-8: Collision Detection Error Details
5-8

168542-1CD

93 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.3 Using the MLxRobotCollisionDetection Instruction
5.3 Using the MLxRobotCollisionDetection Instruction

The previous section described how to configure Collision Detection from
the MLX HMI, and this is the recommended method for initially configuring
Collision Detection. However, after initial configuration, it is useful to
change Collision Detection behavior from the application code itself. This
can be useful for properly initializing Collision Detection during application
setup or for changing the Collision Detection behavior at different points in
the operation of the program (for example, to have stricter behavior at
pick/place operations to prevent product damage). This can be done by
using the MLxRobotCollisionDetection instruction (Fig. 5-9)..

Fig. 5-9: MLxRobotCollisionDetection Instruction

This instruction operates much like other configuration instructions in that
the instruction will be complete when the Sts_DN bit is turned on. Table
5-1 shows the parameters of this instruction and their meanings.

Table 5-1: MLxRobotCollisionDetection Instruction Parameters
Parameter Description

RobotNumber The robot commanded by this instruction instance. Valid
values are 0 to MLX[].NumberOfRobots-1.

CollisionFile The Collision File to use. Valid values are 0 to
ApplicationData.NumberOfCollisionFiles-1

Action Use this to define the action taken by the instruction. Valid
actions are:
0 - Start Measurement Mode.
1 - Start Execution Mode.
2 - Stop Collision Monitoring.
3 - Get Maximum Torque Disturbance.
4 - Reset Maximum Torque Disturbance.

ApplicationData The MLXApplicationData controller scope tag.
5-9

168542-1CD

94 of 206

5 Collision Detection
5.3 Using the MLxRobotCollisionDetection Instruction

168542-1CD

MLX200 Software and
Operations
5.3.1 Initializing Collision Detection from Application

Because Collision Detection settings are not retained on the MLX200
Control Module, the active settings will be lost if power is cycled or the
MLX PLC Interface Application is restarted. The Collision Detection
settings should always be activated as part of application initialization. An
example of activating Collision File #2 to start in Execution Mode is shown
in Fig. 5-10.

Fig. 5-10: Example of Activating Collision Detection from Ladder Logic

CAUTION

Collision Detection settings are not retained on the MLX200 Control
Module and can be lost if power is cycled or the MLX PLC Interface
Application is restarted. Collision Detection should be activated during
application initialization.
5-10

168542-1CD

95 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.3 Using the MLxRobotCollisionDetection Instruction
5.3.2 Measuring Collision Detection from Application

To collect Measured Torque Disturbance Data, the
MLxRobotCollisionDetection instruction can be executed with Action = 0.
After executing this instruction, the application cycle can be executed and
a number of cycles run. When done, call MLxRobotCollisionDetection with
Action=2 (Stop Collision Detection) which will also automatically update
the Measured Torque Disturbance Data inside the ApplicationData
structure. Fig. 5-11 shows a simple example of this.

Fig. 5-11: Measuring Torque Disturbance Data from Application

CAUTION

• To get accurate data during Measurement Mode, the tool load must be
entered and activated from either the Tool Properties HMI screen or
the MLxRobotSetToolProperties instruction.

• Tool Load must not exceed rated values for the robot.

NOTE

If the speeds or accelerations of the application are
changed after configuring Collision Detection, the
configuration may not be reliable. It is recommended to
re-configure Collision Detection if changes to motion
profiles are made.
5-11

168542-1CD

96 of 206

5 Collision Detection
5.3 Using the MLxRobotCollisionDetection Instruction

168542-1CD

MLX200 Software and
Operations
5.3.3 Changing Collision Detection Behavior during Application

Another potential use of Collision Detection is to change the behavior
based on certain parts of the application cycle. For example, it might be
useful to use a different Collision File for Pick/Place operations than for
general transfer motions. To do this, simply call the
MLxRobotCollisionDetection instruction with the desired Collision File #
before these motions, and then set it back to the normal setting
afterwards. Fig. 5-12 shows an example of this. On ApplicationStep=100,
the Collision File # is changed to 5, and then the pick/place operation is
executed. Afterwards, the Collision File is switched back to 2.

Fig. 5-12: Changing the Collision File # during an Application
5-12

168542-1CD

97 of 206

168542-1CD

MLX200 Software and
Operations

5 Collision Detection
5.3 Using the MLxRobotCollisionDetection Instruction
This can be expanded for more complicated application scenarios as well.
For example, consider the simple picking sequence shown in Fig. 5-13.
The robot moves from P1 to an approach point at P2 and then to a pick
location at P3. Then, the robot moves back through the approach point at
P2 to a waypoint at P1. In this kind of application it may be desirable to
activate many different Collision Files throughout the application: one for
general point-to-point motions without product, one specifically for picking/
placing parts, one for general point-to-point motions with product, etc.

Fig. 5-13: Simple Picking Sequence

To achieve this, the Collision File can be changed throughout the
application cycle as shown as a flowchart in Fig. 5-14. In this example, an
initial Collision File (#1) is activated at the beginning of the sequence.
Then, the Collision File is changed to #2 before the motion down to grasp
the object. Then, a new Collision File (#3) is activated after the object has
been picked to more accurately match the loading of the system. This
application logic could be further expanded to do a similar sequence on
the place side as well.

Fig. 5-14: Flow Chart of Changing Collision Files during Application
5-13

168542-1CD

98 of 206

6 Conveyor Tracking
6.1 Conveyor Tracking Overview

168542-1CD

MLX200 Software and
Operations
6 Conveyor Tracking

This section describes the configuration and use of the MLX200 Conveyor
Tracking feature. The AOIs and other functionality listed in this section are
only available if the Conveyor Tracking option has been purchased and is
enabled in the MLX200 license file.

6.1 Conveyor Tracking Overview

The conveyor tracking AOIs enable the robot to perform movements
relative to a part as it travels down a conveyor. The positions are originally
taught with the conveyor stopped. During playback, any motion
commands in between the MLxRobotConvSyncStart and
MLxRobotConvSyncStop AOIs will be synchronized with the linear motion
of the part moving on the conveyor.

Fig. 6-1: Conveyor Tracking Cell Configuration
6-1

168542-1CD

99 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.1 Conveyor Tracking Overview
Referring to the example in Fig.6-2 "Robot Taught Positions with
Conveyor Off", the conveyor is stopped with the part at a known distance
from the photo eye. Seven points are taught near the part. The move
commands to points P2-P6 will be placed in the job in between the
MLxRobotConvSyncStart and MLxRobotConvSyncStop AOIs. In
Automatic mode, when the job is executed, the robot will move to the
points taught relative to the part, while it moves down the conveyor. The
conveyor motion will be interpolated or added to the taught positions to
create a tracking sequence (Fig.6-3 "Robot Path During Playback")

Fig. 6-2: Robot Taught Positions with Conveyor Off

Fig. 6-3: Robot Path During Playback
6-2

168542-1CD

100 of 206

6 Conveyor Tracking
6.2 Conveyor Tracking Requirements

168542-1CD

MLX200 Software and
Operations
6.2 Conveyor Tracking Requirements

At a high level, a customer requires four things to setup conveyor tracking.
These are:

1. A conveyor.

2. An incremental encoder that is mounted to the conveyor for reading
conveyor position.

3. A counter card (or something comparable) for ControlLogix/
CompactLogix that is used to read the encoder position.

4. A sensor that generates a trigger output that is used to capture the
position of an object on the conveyor. Normally, this output will be
wired in to the “latch” input of the counter card.

Conveyor tracking has been tested with MLX200 using the following
hardware/software:

1. Conveyor - Any straight line conveyor with speeds up to 150 ft/minute.

2. Counter Card - The 1756-HSC/B Version 3.4 card for ControlLogix and
the 1769-HSC/B Version 2.1 card for CompactLogix.

3. Incremental Encoder - Allen Bradley 845H

4. Latch Input - Photo Eye/Switch (e.g. Allen Bradley 42EF-D1JBCK-F4
series A)

5. MLX200 Control Module with Conveyor Tracking feature enabled.

6. RSLogix 5000 development environment Version 20.

MLX200 is delivered with a sample conveyor tracking program. The
sample program consists of a basic conveyor tracking program that uses
the MLX200 Conveyor tracking AOI's. This sample program can be used
as a starting point to building a full conveyor tracking application.
6-3

168542-1CD

101 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.3 Configuring Conveyor Tracking
6.3 Configuring Conveyor Tracking

To run Conveyor Tracking, the MLX Conveyor Task will need to be
imported and then scheduled inside the MLX_Task. The MLX Conveyor
Task should be scheduled to run before the MLX200 Communications
Task as shown on the right side of Fig.6-4 "Importing and Scheduling the
Conveyor Task".

Fig. 6-4: Importing and Scheduling the Conveyor Task

After importing the Conveyor Task,
several new tags will show up in the
Control Module Scope tags. These
tags will have the prefix “Conveyor0”
for the first conveyor, “Conveyor1” for
the second conveyor, etc… These tags
will need to be aligned/linked to the
proper HW devices that are being used
for reading/latching the conveyor
position. Table 6-1 "Control Module-Scope Conveyor Tag Descriptions"
shows a brief introduction to what each of these tags means. Section 6.4
“1756-HSC Counter Card Configuration” on page 6-6 will provide an
example of setting on a 1756 HSC Counter card for ControlLogix. A
similar procedure can be followed for other devices.

Table 6-1: Control Module-Scope Conveyor Tag Descriptions

WARNING
Failure to set up the Conveyor Tags correctly can lead to unexpected
behavior during conveyor tracking.

Tag Name Input/
Output

Description

Conveyor0_CameraState Input This bit should turn on when an
object is in front of the camera.

Conveyor0_NewData Input This bit should turn on when a new
object has passed by the camera and
stay on until the ResetNewData
signal is sent

Conveyor0_ResetCounter Output Turning this bit on should reset the
counter card position to 0.

Conveyor0_ResetNewData Output Turning this bit on will reset the
NewData flag (used internally to tell
the counter that the current object
has been processed and queued).

Fig. 6-5: Control Module-Scope
Conveyor Tags
6-4

168542-1CD

102 of 206

6 Conveyor Tracking
6.3 Configuring Conveyor Tracking

168542-1CD

MLX200 Software and
Operations
The following sections will always use the “Conveyor0” prefix to describe
the setup, configuration, and operation of Conveyor Tracking. If using a
different conveyor number, simply substitute the correct into the prefix.

Conveyor0_CurrentValue Input This should contain the current
position of the conveyor in encoder
counts.

Conveyor0_LatchedValue Input This should contain the current
latched position of the conveyor.
When a new object passes the
camera eye, this position will be
stored until the ResetNewData flag is
sent.

Conveyor0_RollOver Input The RollOver value of the conveyor.
This must be set to the proper
RollOver value or Conveyor Tracking
will not function properly during
rollover conditions.

NOTE
The following sections will always use the “Conveyor0”
prefix to describe the setup, configuration, and operation of
Conveyor Tracking. If using a different conveyor number,
simply substitute the correct into the prefix.

Tag Name Input/
Output

Description
6-5

168542-1CD

103 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.4 1756-HSC Counter Card Configuration
6.4 1756-HSC Counter Card Configuration

This section will describe how to set up the Rockwell Automation High
Speed Counter card (1756-HSC) and the conveyor.

6.4.1 Wiring the 1756-HSC

The HSC card can be configured in several different ways. Each HSC
card supports two independent counters. The setup described in this
document uses only one of the two counters.

Each encoder that is connected to a conveyor needs one counter.
MLX200 is capable of tracking 2 conveyors per system. For a given
encoder, its wires should be tied to the HSC in the following manner.

• HSC card Input A: Tied to conveyor encoder

• HSC card Input B: Tied to conveyor encoder

• HSC card Input Z: Tied to photo switch or any other input that acts as
a trigger for object detection (could be a vision system)

Refer to the HSC USERS GUIDE SECTION 4 for details on wiring an
HSC card to a conveyor.

The Z input is used to automatically latch the conveyor position in the HSC
card. See the HSC USERS GUIDE PAGE 20 for details on this mode of
operation.

6.4.2 Configuring the 1756-HSC in RSLOGIX

To add an HSC to the project, right-click on the Backplane in the Control
Module Organizer, select “New Module” and navigate to the HSC card,
see Fig.6-6 "Adding the 1756-HSC Card to RSLogix":

Fig. 6-6: Adding the 1756-HSC Card to RSLogix
6-6

168542-1CD

104 of 206

6 Conveyor Tracking
6.4 1756-HSC Counter Card Configuration

168542-1CD

MLX200 Software and
Operations
Then, right-click on the HSC and bring up its Properties. On the {General}
screen, set the correct slot number for the HSC. On the {Counter
Configuration} screen, set the Operational Mode to “Encoder x4 Mode”
and the Storage Mode to “Store and Continue Mode” see Fig.6-7 "1756-
HSC Module Properties Configuration".

Fig. 6-7: 1756-HSC Module Properties Configuration

6.4.3 Linking the Conveyor Tags for a 1756-HSC

After configuring the HSC, the Conveyor Tags can be aliased to the proper
HSC tags as shown in Fig.6-8 "Conveyor Tags Linked to HSC".

Fig. 6-8: Conveyor Tags Linked to HSC

NOTE

• Encode x1 Mode can also be used, but this will have a
lower resolution.

• For MLX200 Conveyor Tracking to work properly during
counter rollover, the Rollover value must be set.
6-7

168542-1CD

105 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.5 Conveyor Parameter Configuration for MLX200
6.5 Conveyor Parameter Configuration for MLX200

The information for configuring a specific conveyor for MLX200 is located
in the ApplicationData.ConveyorData tag structure.

Fig. 6-9: Conveyor Data Inside Application Data

The ConveyorData tag structure contains the following variables:

Fig. 6-10: Conveyor Application Data

Table 6-2: Conveyor Tag Descriptions
Parameter Name Description

Conveyor Name User defined name of conveyor.

IsActive Turns conveyor reading on for this conveyor. This
must be turned on for any active conveyors and
should be turned off for unused conveyors to
preserve MLX_Task load.

ControlIndex If using multiple MLX200 Control Modules, this
points to the correct module. Default value is 0.

ConveyorPosition Feedback conveyor position in mm (Note this value
is for reading only - modifying this value will have no
effect.)

ConveyorStartPosition Conveyor Position where tracking operations should
begin (note this value is stored here only for
information purposes - this will still need to be
inputted to the conveyor instructions)

ConveyorTeachPosition Conveyor Position where positions were taught
(note this value is stored here only for informational
purposes - this will still need to be inputted to the
conveyor instructions.)

UserFrameNumber User frame number attached to conveyor (note: this
value is stored here only for informational purposes -
this still need to be made active using the
MLxRototSetUserFrame instructions)
6-8

168542-1CD

106 of 206

6 Conveyor Tracking
6.5 Conveyor Parameter Configuration for MLX200

168542-1CD

MLX200 Software and
Operations
ConveyorType 0 = Linear, 1 = Circular (only Linear supported at this
time.)

EncoderToMMConversion The mm per encoder count. i.e.
[EncoderCount] * EncoderToMMConversion =
Distance (mm))

NbrOfPointsToLinearFit The number of points used to calculate a linear fit of
the encoder positions. Useful mainly for conveyor
running at close to constant speeds. The valid range
for this parameter is 0 - 50.

NbrOfPointsToAverage The number of points used to calculate a moving
average of the encoder positions. Useful for noisy
encoder signal. The valid range for this parameter is
0 - 50.

LagOffset An offset in mm along the x direction of the
conveyor. This can be used to offset a constant
error along the conveyor. This value can be
used to fine tune the execution positions of
motion instructions that execute after a call to
MLxRobotConvSyncStart. A positive value
corresponds to an adjustment in the +X
direction.

NbrOfPartsInPattern This value is used for Pattern-Based
Distribution in the case of running multiple
robots on the conveyor. See Section 6.7.2.3
“Advanced Application Options”.

PartPattern This value is used for Pattern-Based
Distribution in the case of running multiple
robots on the conveyor. See Section 6.7.2.3
“Advanced Application Options”.

PatternPosition This value is used for Pattern-Based
Distribution in the case of running multiple
robots on the conveyor. See Section 6.7.2.3
“Advanced Application Options”.

Parameter Name Description
6-9

168542-1CD

107 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.6 Conveyor Tracking Setup Procedure
6.6 Conveyor Tracking Setup Procedure

6.6.1 Verify Counter Card is Functional

Before attempting Conveyor Tracking operations, the functionality of the
counter card (or comparable device) should be verified. To do this, first
temporarily unschedule the MLX_Conveyor_0 Task so that MLX200 is not
interacting with the conveyor setup. Verify the following steps:

1. Turn conveyor on and start moving it. The Conveyor0_CurrentValue
should start increasing.

2. Place an object on the conveyor and have it move past the photo eye.
As it crosses, the Conveyor0_CurrentValue should be stored in the
Conveyor0_LatchedValue tag, and the Conveyor0_NewData bit
should turn to 1.

3. In this state, place another object on the conveyor and move it past the
photo eye. This time the Conveyor0_LatchedValue tag should not
change (as there is already a latched value).

4. Toggle the Conveyor0_ResetNewData bit. The Conveyor0_NewData
bit should turn to 0.

5. Place another object on the conveyor and move it past the photo eye.
The behavior now (after the data flag is reset) should be the same as
in step 2.

If the above steps work correctly, the hardware is configured properly. If
not, it is important to debug the counter card before moving on to the next
step.

6.6.2 Calculate Conveyor Resolution

With the conveyor stopped, set a part on a conveyor. Place a ruler next to
the conveyor. Record the Conveyor0_CurrentValue for the current
position. Operate the conveyor to move the part approximately 1000 mm.
Measure the distance that the part traveled (mm). Record the new
Conveyor0_CurrentValue, and subtract the previous value to determine
the change in encoder pulse counts. Calculate the pulse count conversion
factor (distance traveled / pulse counts), and enter the value in
ApplicationData.ConveyorData[].EncoderToMMConversion tag.

To verify the tag is correct, operate the conveyor again and verify that the
changing ApplicationData.ConveyorData [].ConveyorPosition variable is
reporting the distance traveled in mm.

6.6.3 Teach a User Frame

Install a pointing device on the robot and enter the tool data. Teach a user
frame for the conveyor. The direction of travel for the conveyor should be
the +X direction of the conveyor frame. Record this frame number in the
ApplicationData.UserFrame[].UserFrameNumber tag and add a call to
MLxRobotSetUserFrame in your application logic.

WARNING
If the behavior of the Conveyor Tracking tags does not match what is
described below, Conveyor Tracking operations will not work correctly
and could cause unexpected robot behavior.
6-10

168542-1CD

108 of 206

6 Conveyor Tracking
6.6 Conveyor Tracking Setup Procedure

168542-1CD

MLX200 Software and
Operations
6.6.4 Teach Point and Setup Tracking Parameters

 Conveyor Teach Position Value

Operate the conveyor to move a part past the photo eye and stop the
conveyor at a position where the part will be taught. Determine how far the
part traveled past the photo eye. This can be obtained by either measuring
the distance from the sensor to the front edge of the part, or by referring to
the ApplicationData.ConveyorData[].CurrentPosition tag. Note that every
time a part crosses the photo eye, this tag should reset to zero.

Distance = ApplicationData.ConveyorData [].CurrentPosition

Record this value inside the ApplicationData.ConveyorData[] tag structure
or enter it using the {Conveyor Tracking HMI} screen (Fig.6-11 "Conveyor
Tracking Setup Screen").

Teach all the robot positions relative to the part with the conveyor stopped.
Typical points taught will be an approach position above the part, a grip
position at the part, and a depart position above the part. During playback,
Linear Motion instructions can be used to move the robot TCP to these
points while tracking the part motion on the conveyor, as long as they fall
between a MLxRobotConvSyncStart and a MLxRobotConvSyncStop.

Enter the remaining parameters on the {HMI Conveyor Tracking Setup}
screen:

Fig. 6-11: Conveyor Tracking Setup Screen

WARNING
The motions performed while conveyor tracking will be different from
those taught with the conveyor stationary. Thus, certain errors may be
encountered while tracking that would not show up otherwise (e.g.
speed/limit violations).
6-11

168542-1CD

109 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.6 Conveyor Tracking Setup Procedure
 Sync Start Position Value
Determine how far past the photo eye the conveyor tracking sequence
should begin. The robot will wait at the MLxRobotConvSyncStart
instruction until the part has traveled to this distance past the sensor. At
this point, the robot will begin to move.

 Max Start Position Value
Estimate the worst case distance past the photo eye that the robot will be
able to begin tracking a part and successfully pick it up without reaching a
software limit. This parameter is used for queued parts. After moving a
part, the robot will return to the pounce position. If a new part had already
crossed the photo eye and is in a queue, the MLxRobotConvSyncStart
AOI will determine if its location is past the Max Start Position Value, which
will indicate the pickup cannot be reached within the work space.
Whenever the speed of the conveyor is changed, this value should be
adjusted. Note that in the data structure the Max Start Position is an array,
so that a different value can be inputted for each robot.

 # of Points to Average/Linear Fit for Conveyor Position
These parameters will allow you the smooth out feedback from the
conveyor motion. Up to 50 encoder position readings can be averaged or
linearly fit.

 Conveyor Position
This field is for conveyor position reference only and cannot be changed.

 Lag Offset
The lag offset parameter can be adjusted to speed up or slow down the
SyncStart instruction execution time, so that parts can be picked up at a
consistent location on the part. It can compensate for I/O hardware
delays.

6.6.5 Debugging Pickup Position Errors

6.6.5.1 Part is Gripped at Different Locations on Part

If the part is gripped at different locations on the part, the conveyor
resolution is not as accurate as it needs to be. This is typically observed
when the part is picked from different locations on the conveyor.

To improve this resolution, slow the conveyor down, and add a long delay
in the program after the move position above the part. During the
playback, the robot will be tracking the conveyor with the gripper above
the part. If the conveyor resolution tag is accurate, the robot should
maintain its position relative to the moving part, while it is executing the
long delay. If it is observed that the robot gripper is drifting forward or
backward in respect to the part, modify the EncoderToMMConversion tag
until the drift is eliminated.

NOTE This section should be utilized after the ladder program is
developed.
6-12

168542-1CD

110 of 206

6 Conveyor Tracking
6.6 Conveyor Tracking Setup Procedure

168542-1CD

MLX200 Software and
Operations
6.6.5.2 Part is Gripped Consistently at the Wrong Location on the Part

 Part is Gripped Consistently at the Wrong Location on the Part
If the part is picked up anywhere on the conveyor with the gripper
consistently at the wrong location on the part, there is a small execution
delay that needs to be calibrated. Typically, this is caused by the response
time of hardware I/O. In most cases, it is desired to program the gripper to
pick up the part at a center location on the part. On the {HMI Conveyor
Tracking Setup} screen, the Lag Offset can be modified to fine tune the
pickup of position of the gripper on the part.

Whenever the conveyor speed is changed, the Lag Offset should be
modified. The corresponding tag in the ladder is
ApplicationData.ConveyorData[x].LagOffset.
6-13

168542-1CD

111 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
6.7 Developing a Conveyor Tracking Application

This section will describe how to develop a conveyor tracking application
using MLX200. The first section will introduce the instructions specific to
Conveyor Tracking. Then, several examples of how to structure a
Conveyor Tracking application are shown. Finally, several potential pitfalls
that can be encountered while using Conveyor Tracking are discussed.

6.7.1 Conveyor Tracking Instructions

MLX200 has 4 instructions related to Conveyor Tracking. Two basic
instructions are provided to turn conveyor tracking on/off:

 MLxRobotConvSyncStart
Starts conveyor tracking

 MLxRobotConvSyncStop
Stops conveyor tracking

There are also two instructions for blending motion within the sync
commands. These commands are available to assist with increasing pick
rates.

 MLxRobotConvSyncStopWithLinearMot
While turning off conveyor tracking operations, blend motion into a linear
path to the next point.

 MLxRobotConvSyncStopWithAxisMot
While turning off conveyor tracking operations, blend motion into a joint
path to the next point.

6.7.1.1 MLxRobotConvSyncStart Instruction

 MLxRobotConvSyncStart
AOI is used to begin conveyor tracking operations. When called, this AOI
will wait for an object to be added to the queue (this happens
automatically when an object passes the photo eye) and then turn on the
Sts_DN bit.

 ConveyorStartPosition
This is the position along the conveyor that the robot will start to track
queued objects. If you are familiar with Motomans INFORM language then
ConveyorStartPos variable is analogous to the STP parameter. Range of
valid values is 0-MaxStartPosition.

Fig. 6-12: Conveyor Synchronization Start Instruction
6-14

168542-1CD

112 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
 ConveyorTeachPos
The ConveyorTeachPos (analogous to the CTP parameter in INFORM) is
the position along the conveyor where the robot programmed points were
taught with the conveyor stopped.

 UserFrameNumber
The User Frame Number that defines the X-direction of the conveyor.

 .Sts_DN
This output will be asserted once a part has crossed the
ConveyorStartPos.

 .Sts_OL
This output is asserted when a queued object has gone beyond the
MaxStartPosition value.

Fig. 6-13: MLxRobotConvSyncStart Instruction Parameters

6.7.1.2 MLxRobotConvSyncStop Instruction

MLxRobotConvSyncStop is
used to turn off conveyor
synchronization and updates
the internal object queue.
Currently, the
Conveyor0_CurrentValue for
the correct conveyor must be
passed into the AOI. In
addition, there are two
parameters (KeepInQueue
and NewRobotQueue) which
can be used to handle how the
object queue is updated. If
KeepInQueue is set to 0, the
object is flushed from the queue and no longer tracked. In this case, the
value of NewRobotQueue does not matter. If KeepInQueue is set to 1, the
value of NewRobotQueue will move the object to that robot's queue. If
NewRobotQueue is equal to the current robot, the object will be kept in the
current robot's queue and will be the first object in the queue when
another ConvSyncStart is called. This is useful if an application requires
stopping conveyor tracking operations temporarily while still tracking the
same object.

Fig. 6-14: Conveyor Synchronization
Stop Instruction
6-15

168542-1CD

113 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
6.7.1.3 MLxRobotConvSyncStopWithLinearMot Instruction

MLxRobotConvSyncStopWi
thLinearMot is basically a
combination of a Linear
Motion and a Conveyor
Sync Stop. This instruction
will turn off conveyor
tracking operations and
update the object queue like
a normal Conveyor Stop;
however, instead of
stopping the robot motion, it
will instead blend directly
into a linear motion at
another target. This can
help decrease cycle times in
demanding applications.
The rest of the parameters
for the Linear Motion are
identical to a normal motion
instruction. The Blend
Factor in this case will be
used to blend into any motions that are added to the back of the
command.

6.7.1.4 MLxRobotConvSyncStopWithAxisMot Instruction

MLxRobotConvSyncStopWit
hAxisMot is basically a
combination of a Linear
Motion with a Conveyor Sync
Stop. This instruction will turn
off conveyor tracking
operations and update the
object queue like a normal
Conveyor Stop; however,
instead of stopping the robot
motion, it will instead blend
directly into a PTP motion at
another target. This can help
decrease cycle times in
demanding applications. The
rest of the parameters for the
Axis Motion are identical to a
normal motion instruction.
The Blend Factor in this case will be used to blend into any motions that
are added to the back of the command.

Fig. 6-15: Conveyor Synchronization Stop
Followed by a Linear Move Instruction

Fig. 6-16: Conveyor Synchronization Stop
6-16

168542-1CD

114 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
6.7.2 Programming Structure for a Conveyor Tracking Application in
Ladder

The following sections will describe the basic methodology to program a
conveyor tracking application.

6.7.2.1 Program Structure Overview

Fig.6-17 "Basic Program Structure for a Conveyor Tracking Application"
shows the basic structure of a simple Conveyor Tracking program. On
Step 10, an Axis Motion (e.g. MLxRobotMoveAxisAbsolute) is used to
move the robot to its “pounce” position. This is the position from which the
robot will wait to start tracking objects. After this motion is complete, Step
20 will wait at an MLxRobotConvSyncStart command until a part crosses
the photo eye and moves past the defined ConveyorStartPosition. After
this happens, the program will move to Step 30 where the linear motions
to the taught points relative to the part are executed while tracking the
moving part. When these motions are complete, Step 40 will call an
MlxRobotConvSyncStop command which will stop the tracking action and
also remove the part from the queue.

Fig. 6-17: Basic Program Structure for a Conveyor Tracking Application

The ConvSyncStop on Step 40 could also be replaced with a
ConvSyncStopWithAxisMotor or ConvSyncStopWithLinearMot to allow
smooth blending out of the conveyor tracking operations.

NOTE Only linear moves are supported when conveyor tracking is
on. A call any other type of motion will result in an error.
6-17

168542-1CD

115 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
6.7.2.2 Program Structure Details

This section will expand on the information from the previous section and
show how the conveyor tracking instructions will look like in actual
application code. The first step of the application is to activate the User
Frame that is attached to the conveyor and to reset the conveyor state
(Fig.6-18 "Conveyor Initialization Step"). The following actions are
performed to reset the conveyor:

• Moving 0 into the robot's QueueControl.POS variable will act to flush
the queue. Thus, any parts remaining in the queue will be removed.

• The Conveyor0_ResetNewDataFlag variable lets the MLX200 know
that the last value that was added to Conveyor0_LatchedValue has
been processed. In the case that a system is aborted between a part
being detected and processed, adding additional points may not
work correctly if this is not reset.

• The Conveyor0_ResetCounter variable will simply reset the
counter's current encoder count to 0. This is not technically required
but will ensure the application starts from the same configuration
every time.

Fig. 6-18: Conveyor Initialization Step

After the initialization is complete, the program step is incremented to 20.
At step 20, an Axis Motion to the conveyor pounce position is executed.
Note that this step is incremented to 30 when the Sts_DN bit (instead of
Sts_PC bit) of the motion instruction turns on. This means that the
program will move to Step 30 (Conveyor Sync Start) as soon as the
motion is queued rather than waiting for the motion to complete. Thus, if a
part crosses the photo eye while this motion is taking place, it can blend
into the tracked motions. For more information on using the Sts_DN to
trigger application logic, review Section 4.4.2 “DN BIT Checking” on page
4-20.

CAUTION

Output Latch (OTL) and Output Unlatch (OTU) should be used to
toggle the conveyor output signals. Do not use Output Energize (OTE)
as this could interfere with internal tasks.
6-18

168542-1CD

116 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
After the motion to the pounce position is called, the step will increment to
Step 30 where the Conveyor Sync Start instruction is executed (Fig.6-19
"Move to Conveyor Pounce Position"). As mentioned earlier, this
instruction will wait for an object to pass the photo eye and move to the
Conveyor Start Position before turning on its Sts_DN bit. This instruction
also has a Sts_OL bit which will turn on only if the object has moved past
its Max Start Position. If the Sts_OL bit is high, the application will
increment straight to the Conveyor Sync Stop rung (Step 50) - otherwise, it
will move to the Tracked Motions (Step 40)
(Fig. 6-20).

Fig. 6-19: Move to Conveyor Pounce Position

Fig. 6-20: Conveyor Sync Start Step
6-19

168542-1CD

117 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
Fig.6-21 "Execute Tracked Motions Step" shows the rung that executes
the actual tracked motions. Here three simple linear motions are being
executed.

Fig. 6-21: Execute Tracked Motions Step

Finally, Fig.6-22 "Conveyor Sync Stop Step" shows the Conveyor Sync
Stop step. The Conveyor Sync Stop instruction will turn off conveyor
tracking operations and update the internal object queue (based on the
values of KeepInQueue and NewRobotQueue as detailed in Section
6.7.1.2 “MLxRobotConvSyncStop Instruction”). After the Sts_DN bit is set,
this application also checks if there are any additional objects in the
queue. If the queue is not empty, the application returns immediately to
the Conveyor Sync Start step (Step 30). Otherwise, it returns the Step 20
where the motion to the pounce position is executed.

Fig. 6-22: Conveyor Sync Stop Step
6-20

168542-1CD

118 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
6.7.2.3 Advanced Application Options

MLX200 also contains several advanced application options that are
useful when using multiple conveyors or multiple robots on one conveyor:

• Pattern-Based Distribution - the ability to route parts on a
conveyor to multiple robots based on a set pattern.

• Dynamic Load-Balancing - the ability to move objects between
different robot queues.

The following sections will discuss these concepts and briefly describe
some of the more advance application scenarios that they support.

 Pattern-based Distribution
In the case of multiple robots working on the same conveyor, MLX200
allows parts to be routed to each robot based on a pattern. For example,
parts could just simply be routed every other part to two robots (i.e. part 0
to Robot 0, part 1 to Robot 1, part 2 to Robot 0, part 3 to Robot 1, etc…).
This pattern can be set up directly in the tags shown in Table 6-3 "Pattern-
Based Distribution" or through the {HMI} screen shown in Fig.6-23
"Pattern-based Distribution HMI Screen".

Table 6-3: Pattern-Based Distribution

Fig. 6-23: Pattern-based Distribution HMI Screen

Pattern Description

NbrOfPartsInPattern The number of parts in the repeating pattern (up to 16)

PartPattern An array that defines which robot each part in the
pattern will be routed to (only the first
NbrOfPartsInPattern elements are used.)

PatternPosition Defines the current position in a pattern. This value can
also be set during application initialization to define
where to start the pattern (e.g. if recovering from an
error condition).
6-21

168542-1CD

119 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
For example, consider the pattern
defined in Fig.6-24 Conveyor
Pattern Configuration. This pattern
has two parts that are cycled
between two robots, and this pattern
will be repeated as more parts
come. Since every other part goes
to each robot, the routing of parts
coming down a conveyor would like Fig.6-25 "Pattern-based Distribution
Example".

Fig. 6-25: Pattern-based Distribution Example

Fig. 6-24: Conveyor Pattern
Configuration
6-22

168542-1CD

120 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
 Dynamic Load-balancing
Dynamic Load-Balancing refers to the process of using the KeepInQueue
and NewRobotQueue variables in the Conveyor Sync Stop instruction to
dynamically handle the object queue. The use of these variables was first
described in Section 6.7.1.2 “MLxRobotConvSyncStop Instruction”. This
section will show how these variables can be used to implement several
application scenarios.

First, consider the example shown in Fig.6-26 "Two Robots on One
Conveyor Example" with two robots on one conveyor. In the previous
section, we introduced how the parts could be routed between the two
robots using Pattern-Based Distribution. Another way to handle this
application would be to route all parts to Robot 0, and then have Robot 1
pick any parts that the first robot missed. To do this, the application logic
could check the Sts_OL bit from Robot 0's Conveyor Sync Start
instruction. If this was set to 1, the Conveyor Sync Stop command could
be called with KeepInQueue=1 and NewRobotQueue=1. This would move
the part to Robot 1's queue where it could be picked further down the line.

Fig. 6-26: Two Robots on One Conveyor Example

NOTE

It is also possible to combine Pattern-based Distribution and
Dynamic Load-Balancing. For example, in the above
scenario, a pattern of 2 parts to Robot 0 and then 1 part to
Robot 1 could be established, with Robot 0 still moving the
parts it missed to Robot 1.
6-23

168542-1CD

121 of 206

168542-1CD

MLX200 Software and
Operations

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application
Another example scenario involves a robot is picking parts off of one
conveyor and placing them onto a tracked part on another conveyor. For
example, consider the application shown in Fig.6-27 "One Robot with Two
Conveyors Example". In this example, parts are being tracked and picked
on Conveyor 0 and placed onto a tracked tray on Conveyor 1. After four
parts have been placed on the tray, the robot will remove that tray from its
queue and start placing parts on the next tray. To do this, the Conveyor
Sync Stop command on Conveyor 1 would be called with KeepInQueue=1
and NewRobotQueue=0. This tells the system to stop tracking that
conveyor but keep the part in the queue for the next time. After the tray is
full, a Conveyor Sync Stop with KeepinQueue=0 could be called to flush
the object.

Fig. 6-27: One Robot with Two Conveyors Example

6.7.2.4 Conveyor Tracking Programming Pitfalls

The following sections describe some basic pitfalls that can come from
programming Conveyor Tracking applications.

 DELAY AFTER CHECKING MAXSTARTPOSITION
The start position of an object is recorded and checked against the
MaxStartPosition when the MLxRobotConvSyncStart command is
executed. If there is a delay between this call and the first motion (as in
Fig.6-28 "Basic Conveyor Program Structure"), a part may move beyond
the MaxStartPosition without an error occurring. For this case, the part
might not be reachable and an axis limit might be exceeded.
6-24

168542-1CD

122 of 206

6 Conveyor Tracking
6.7 Developing a Conveyor Tracking Application

168542-1CD

MLX200 Software and
Operations
Fig. 6-28: Basic Conveyor Program Structure

 STS_OL USAGE
The MLxRobotConvSyncStart command has a status bit called Sts_OL
that turns on if the part is past its MaxStartPosition when the instruction is
called. It is then up to the application logic how to handle this scenario
(e.g. continue to try to track the part anyway, or abort the system, or skip
the part, etc). The most common scenario will be to skip the part and
record that a part was missed. In this case, a Conveyor Sync Stop
command should be executed to flush the part from the queue. An
example of this ladder code is shown in Fig.6-29 "Example Use of Sts_OL
Bit" Example Use of Sts_OL bit.

Note that an MLxRobotConvSyncStopWithAxisMot or WithLinearMotion
will always attach a motion after the stop. However, in the case of a
Sts_OL bit, the application should only update the queue/turn off conveyor
synchronization. Thus, in this case, a normal MLxRobotConvSyncStop
should be called to prevent an unwanted motion from being added to the
queue. Thus, it may be useful to have both a regular SyncStop and a
SyncStopWithMotion in the application.

Fig. 6-29: Example Use of Sts_OL Bit
6-25

168542-1CD

123 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.1 MLX200 Control Module Status Display
7 Configuration and Maintenance of MLX200 Control Module

The MLX200 Control Module comes pre-configured with a Status Display
and Maintenance Tool which allows the user to get a quick glance at the
current status of the MLX200 Control Module and the PLC Interface
software. This information will serve the purpose of being able to perform
basic troubleshooting of PLC/network connectivity issues and startup or
configuration issues. The tool also provides the user with the capability to
perform maintenance operations such as retrieving log files, backing up
and restoring configuration files or firmware.

7.1 MLX200 Control Module Status Display

The display output of the MLX200 Control Module will continuously
display the {Status Display} screen as shown in Fig.7-1 "Status Display of
MLX200 Control Module". This screen can be viewed by connecting a
standard DVI or VGA monitor to the MLX200 Control Module.

Fig. 7-1: Status Display of MLX200 Control Module

The top half of {Status Display} screen shows the IP Address of the
Control Module and the license configuration. The bottom half displays
information regarding the MLX200 PLC Interface Application (MLX-R.exe)
such as whether the application is currently running, whether it is
connected to the PLC, and whether the system is currently in a fault state.
The information presented in this screen can be used for troubleshooting
configuration, connectivity and startup problems. For example, the user
can quickly determine whether MLX200 PLC Interface Application was
able to establish connection to the PLC without having to connect to the
PC using a separate computer or laptop.
7-1

168542-1CD

124 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.1 MLX200 Control Module Status Display

168542-1CD

MLX200 Software and
Operations
7.1.1 Connecting to MLX200 Control Module Display Remotely

In some installations, it may not be possible to easily access the MLX200
Control Module in order to connect a monitor to view the {Status Display}
screen. A remote display application, named cerhost.exe, is supplied
along with the MLX200 system for such a situation. A user can run this
application on a separate computer and remotely access the display of the
MLX200 Control Module. This section describes how to run the remote
display application and establish a connection.

First step is to ensure that the User PC is connected to the same network
as the MLX200 Control Module, using a wired Ethernet connection. The
User PC should be running a Windows operating system (XP or later) in
order to be able to run the remote display application.

The remote display application can be run by double clicking on
cerhost.exe using Windows Explorer. This will bring up a screen as shown
in Fig.7-2 "MLX200 Control Module Remote Display Application Initial
Screen".

Fig. 7-2: MLX200 Control Module Remote Display Application Initial
Screen

NOTE

The IP addresses of the User PC, and the MLX200 Control
Module must be such that they are in the same subnet, in
order to be able to communicate with each other. The IP
addresses of these must be 192.168.1.xxx, where xxx can
be any number between 1 and 255 that is not used by other
devices in the same network. The default IP address of
MLX200 Control Module is 192.168.1.200 and the user can
change the last number of this IP Address using the
{Maintenance} screens (See Section 7.2.3 “Changing the IP
Address of the MLX200 Control Module” on page 7-7 for
more information). If the IP address of the User PC is not
192.168.1.xxx, then the user has to change the IP address
of the User PC using the Windows network settings before
attempting to connect to the MLX200 Control Module.
7-2

168542-1CD

125 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.1 MLX200 Control Module Status Display
Once the application is running, click on “File” menu item and click on
“Connect…” from the drop down menu as shown in Fig.7-3 "Remote
Display Application Connection Process" (left). This will bring up a dialog
showing a list of active target devices as shown in
Fig.7-3 "Remote Display Application Connection Process" (right). The
MLX200 Control Module will appear in the list of devices in a few seconds.
Once it appears, click on the MLX200_Module listing to select it and press
the [OK] button. The display screen of the MLX200 Control Module will
now appear on the User PC in a few seconds, as shown in Fig.7-5 "Status
Display screen of MLX200 Control Module viewed through Remote
Display Application".

Fig. 7-3: Remote Display Application Connection Process

Fig. 7-4: Windows Security Alert Dialog Box

NOTE

When you click on the “Connect…” drop down menu item in
the remote display application for the first time, Windows
Firewall will ask the user to allow the connection (Fig.7-4
"Windows Security Alert Dialog Box"). Click on the [Allow
access] button to allow the connection. This dialog box will
be shown only once.
7-3

168542-1CD

126 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.1 MLX200 Control Module Status Display

168542-1CD

MLX200 Software and
Operations
Fig. 7-5: Status Display screen of MLX200 Control Module viewed through
Remote Display Application

NOTE

In some cases, the network connection between the User
PC and the MLX200 Control Module may be treated by the
User PC as a “Public Network” even though it is actually a
private network. In such cases, allow the remote display
application to communicate on public networks as well, by
clicking on the check box next to “Public Networks” in the
Windows Security Alert dialog box. This check box is
unchecked by default as shown in Fig.7-4 "Windows
Security Alert Dialog Box".
7-4

168542-1CD

127 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
7.2 Maintenance and Configuration Operations

The Status Display and Maintenance Tool running on the MLX200 Control
Module can be used to perform certain configuration and maintenance
operations such as changing IP address of the Control, retrieving log files
and performing backup and restore of the Control Module. These
interactive operations can be done either physically on the Control Module
itself by connecting a USB keyboard and USB mouse to the USB ports of
the Control Module, or through the Remote Display application running on
the User PC. Using the Remote Display application, the user can interact
with the {Maintenance Operations} screen using the keyboard and mouse
of the User PC itself. The following sections describe the procedure to
perform some of the available configuration and maintenance operations.

7.2.1 Logging in to Perform Maintenance Operations

In order to perform any interactive maintenance operation, the user needs
to log in to the MLX200 Control Module first. Click on the [Login] button in
the {Status Display} screen. This displays the login pop-up dialog as
shown in Fig.7-6 "Logging in to Perform Maintenance Operations".

Fig. 7-6: Logging in to Perform Maintenance Operations

Enter the password that has been configured and click on the [Login]
button. If no password has been configured, the default password is
mlx200. The default password can be changed to a custom password as
described in Section 7.2.2 “Changing the Password of the MLX200
Control Module”. Once the user is logged in, the [Maintenance] button in
the {Status Display} screen will become enabled. Clicking on the
[Maintenance] button will take the user to the MLX200 Control Module
{Maintenance Operations} screen as shown in Fig.7-7 "Maintenance
Operations Screen of MLX200 Control Module".
7-5

168542-1CD

128 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Fig. 7-7: Maintenance Operations Screen of MLX200 Control Module

The user can now select a category of operation on the left, then select a
specific operation in the middle within that category and then click the
[Execute] button to perform the operation. The message display area in
the bottom will display status and instructions regarding each operation.
The user can click on the [Close] button to return to the {Status Display}
screen.

7.2.2 Changing the Password of the MLX200 Control Module

The password required to perform maintenance operations on the
MLX200 Control Module can be changed through the following procedure.
Click on the “Settings” category in the {Maintenance} screen and select
“Change IP Address” from the list of operations as shown in Fig.7-8
"Selecting the Change Password Operation".

Fig. 7-8: Selecting the Change Password Operation
7-6

168542-1CD

129 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
Click on the [Execute] button after selecting the “Change Password”
operation and the user will be presented with the Change Password dialog
as shown in Fig.7-9 "Change Password Dialog".

Fig. 7-9: Change Password Dialog

Enter the current password, new password, confirm the new password
once again and then click the [OK] button. This will change the password
for the MLX200 Control Module.

7.2.3 Changing the IP Address of the MLX200 Control Module

In certain situations, it might be necessary to change the IP Address of the
MLX200 Control Module. This might be necessary if the default IP
address - 192.168.1.200 - is not usable. The IP Address can be changed
using the following procedure. Click on the “Settings” category in the
{Maintenance} screen and select “Change IP Address” from the list of
operations as shown in Fig.7-10 "Selecting the Change IP Address
Operation".

Fig. 7-10: Selecting the Change IP Address Operation
7-7

168542-1CD

130 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Click on the [Execute] button after selecting the “Change IP Address”
operation and the user will be presented with the Change IP Address
dialog as shown in Fig.7-11 "Change IP Address Dialog".

Fig. 7-11: Change IP Address Dialog

Enter the new IP Address and click on the [Set] button. This will update
the IP Address of the MLX200 Control Module. The Control Module
should be rebooted for the IP Address change to take effect. Rebooting
the Control Module can be done as described in Section 7.2.4 “Rebooting
the MLX200 Control Module”.

7.2.4 Rebooting the MLX200 Control Module

NOTE

If the IP Address of the MLX200 Control Module is
changed, the new IP Address should also be updated in the
MLX200 Control Module Communications section of the
RSLogix project for the PLC, as outlined in Section 2.2.1.2
“Configuring an MLX200 Control Module Communication”
on page 2-8. If this is not done, the MLX200 Control Module
will fail to establish communication with the PLC after its IP
Address is changed.

CAUTION

Rebooting the MLX200 Control Module should be performed only after
ensuring that the Control Module is not actively controlling a running
robot cell. Failure to do so might result in sudden stoppage of the cell
which could lead to equipment damage.
7-8

168542-1CD

131 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
The MLX200 Control Module may need to be rebooted in order to perform
a firmware update or restore operation or if the IP Address of the Control
Module has been updated. The Control Module can be rebooted using the
following procedure. Click on the “Settings” category in the {Maintenance}
screen and select “Reboot MLX200 Control Module” from the list of
operations as shown in Fig.7-12 "Selecting the Reboot Operation".

Fig. 7-12: Selecting the Reboot Operation

Click on the [Execute] button after selecting the “Reboot MLX200 Control
Module” operation and the user will be presented with the Reboot
Confirmation dialog as shown in Fig.7-13 "Reboot Confirmation Dialog".

Fig. 7-13: Reboot Confirmation Dialog

7.2.5 Retrieving Log Files

The MLX200 PLC Interface application running on the MLX200 Control
Module generates log files during its normal course of operation. These
log files contain initialization and configuration information as well as a log
of certain significant events and faults. Retrieving and reviewing the log
files can prove to be useful for trouble shooting alarms or faults and other
connectivity issues. The {Maintenance Operations} screen of the MLX200
Control Module can be used to retrieve the log files using the following
procedure. Click on the “Log Files” category in the {Maintenance} screen
and select one of the operations from the list of operations as shown in
Fig.7-14 "Selecting Log Files Operations".
7-9

168542-1CD

132 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Fig. 7-14: Selecting Log Files Operations

The user can choose to download all log files, or just the log files
pertaining to the last run of MLX-R.exe. Select an appropriate operation
and then click on the [Execute] button. The log files selected will be
downloaded to the USB disk inserted on the MLX200 Control Module. The
downloaded log files will be written to a folder on the USB Disk with the
folder name including a time stamp of the operation. The folder name
used for the operation will be displayed in the message box area towards
the bottom of the screen.

7.2.6 Updating Configuration and License Files

The MLX200 Control Module contains configuration files and license files
that describe the robot cell configuration to the MLX200 PLC Interface
Application. In certain situations, it may be necessary to update these
files. For example, a new license file may need to be uploaded to enable
an optional feature or a new configuration file may need to be uploaded
due to a change in hardware configuration. In some cases, a support
person from the manufacturer or system integrator might need to review
the current license or configuration file in order to troubleshoot a problem.
These operations can be performed from the {Maintenance Operations}
screen.

In order to download the current configuration file or license file to a USB
Disk, click on the “Download/Backup” category on the left and select the
respective operation in the middle as shown in Fig.7-15 "Selecting a
Download Operation".

NOTE
All download operations from the {Maintenance} screen
including the download log file operations require a USB
Disk inserted into an available USB port on the MLX200
Control Module.
7-10

168542-1CD

133 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
Fig. 7-15: Selecting a Download Operation

In order to upload a new configuration file or license file, select the
“Upload/Restore” category on the left and select the respective operation
in the middle as shown in Fig.7-16 "Selecting a Upload Operation".

Fig. 7-16: Selecting a Upload Operation

Select the appropriate operation and then click on the [Execute] button. A
new pop-up dialog will be shown as shown in Fig.7-17 "Selecting a File to
Upload to the MLX200 Control Module" that allows the user the select the
appropriate configuration file or license file to be uploaded. Select the file
that should be uploaded and then click on the [Select] button. The
selected file will be uploaded to the MLX200 Control Module.

NOTE
All upload operations from the {Maintenance} screen
require a USB Disk that contains the files to be uploaded, to
be inserted into an available USB port on the MLX200
Control Module.
7-11

168542-1CD

134 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Fig. 7-17: Selecting a File to Upload to the MLX200 Control Module

7.2.7 BACKUP AND RESTORE OPERATIONS

The {Maintenance Operations} screen provides the user with the
capability to take a backup of the MLX200 Control Module firmware or
take a backup of all the Control Module files a precautionary step, so that
the firmware or the Control Module can be recovered or restored from the
backup if needed. The user can create a backup of just the firmware files
which includes the MLX200 PLC Interface Application and its components
and dependencies. The user can also create a backup of all Control
Module files, which include the system files in addition to firmware files.
The firmware or the Control Module can thus be restored from these
backups should the need arise.

The procedure to backup firmware or to backup all Control Module files is
similar. Click on the “Download/Backup” category on the left in the
{Maintenance Operations} screen, and select the appropriate backup
operation as shown in Fig.7-18 "Selecting a Backup Operation".

Fig. 7-18: Selecting a Backup Operation

NOTE
It is recommended to take a firmware backup as well as a
full Control Module backup when a new MLX200 system is
commissioned, and before making significant changes to
the application or system configuration.
7-12

168542-1CD

135 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
Click on the [Execute] button after selecting the appropriate backup
operation. The backed up files will be written to folder on the USB Disk
with the folder name including a time stamp of the operation. The folder
name used for the operation will be displayed in the message box area
towards the bottom of the screen.

The procedure to restore the firmware from a backup or restore all Control
Module files from backup is similar. Click on the “Upload/Restore”
category on the left in the {Maintenance Operations} screen, and select
the appropriate restore operation as shown in Fig.7-19 "Selecting a
Restore Operation".

Fig. 7-19: Selecting a Restore Operation

Click on the [Execute] button after selecting the appropriate restore
operation. A new pop-up dialog will be shown as shown in Fig.7-20
"Selecting the Folder Containing Backed Up Files to Restore" that allows
the user the select the folder in the USB disk that contains the backed up
files to be used for the restore operation.

Fig. 7-20: Selecting the Folder Containing Backed Up Files to Restore

NOTE

Performing a backup operation is not permitted when the
MLX200 PLC Interface software (MLX-R.exe) is currently
running. Before attempting to perform the backup operation,
please ensure that the PLC Interface Application is not
running through the procedure described in Section 7.2.9.1
“Disabling Automatic Restart of MLX-R.exe”.
7-13

168542-1CD

136 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Select the folder that contains the backed up files to be restored and click
the [Select] button. The Maintenance Tool will first perform verification of
the integrity of the backed up files and then prepare the Control Module for
the restore operation. Once this preparation is complete, the actual
restore task will be performed after a reboot of the Control Module. Follow
the procedure outlined in Section 7.2.4 “Rebooting the MLX200 Control
Module” in order to reboot and complete the restore operation.

After the MLX200 Control Module is rebooted to perform the restore
operation, the {Status Display} screen will show the results of the restore
operation as shown in Fig.7-21 "Restore Complete Status Display".

Fig. 7-21: Restore Complete Status Display

7.2.8 Performing Firmware Update

The manufacturer may occasionally issue a software update package to
the MLX200 Control Module Firmware which includes the MLX200 PLC
Interface Application and its components and dependencies. The
procedure to update the firmware on the MLX200 Control Module using
such a firmware update package is described below.

The first step is to copy the entire folder supplied with the firmware update
package to a USB Disk. Then insert this USB Disk into an available USB
port on the MLX200 Control Module. From the {Maintenance Operations}
screen on the Control module, click on the “Upload/Restore” category on
the left and select the “Update MLX200 Control Module Firmware”
operation as shown in Fig.7-22 "Selecting the Firmware Update
Operation".

NOTE

The files and the folders created by the backup procedure
described earlier in this section should not be modified in
any manner. If any file or folder is modified, the integrity
check performed during a restore operation will fail and the
restore will not be performed.
7-14

168542-1CD

137 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
Fig. 7-22: Selecting the Firmware Update Operation

Click on the [Execute] button after selecting the update operation. A new
pop-up dialog will be shown as shown in Fig.7-23 "Selecting the Folder
Containing Firmware Update Files" that allows the user the select the
folder in the USB disk that contains the firmware update files.

Fig. 7-23: Selecting the Folder Containing Firmware Update Files

Select the folder that contains the firmware update files and click the
[Select] button. The Maintenance Tool will first perform verification of the
integrity of the update files and then prepare the Control Module for the
update operation. Once this preparation is complete, the actual firmware
update task will be performed after a reboot of the Control Module. Follow
the procedure outlined in Section 7.2.4 “Rebooting the MLX200 Control
Module” in order to reboot and complete the firmware update operation.

After the MLX200 Control Module is rebooted to perform the update
operation, the {Status display} screen will show the results of the firmware
update operation as shown in Fig.7-24 "Status Display Showing Firmware
Update Result".
7-15

168542-1CD

138 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
Fig. 7-24: Status Display Showing Firmware Update Result

7.2.9 Advanced Operations to Assist with Maintenance and
Troubleshooting

The Maintenance Tool enables the user to perform certain additional
operations that may be needed for advanced trouble shooting purposes.
These include disabling the automatic startup of MLX200 PLC Interface
Application (MLX-R.exe) and manually starting the MLX-R.exe application
once its automatic startup is disabled. By default, MLX-R.exe is set to start
automatically at power up and after it is commanded to restart from the
PLC or HMI. However, in certain situations, it may be necessary to disable
the automatic restart of MLX-R.exe. For example, when performing a
backup of firmware files or backup of all Control Module files, it is
recommended to first disable the automatic startup of MLX-R.exe.

7.2.9.1 Disabling Automatic Restart of MLX-R.exe

If the need arises to disable the automatic restart of MLX-R.exe, for
example to perform a backup operation, click on the “Settings” category
on the left side of the {Maintenance Operations} screen and select “Modify
MLX-R.exe Autostart Settings” operation as shown in Fig.7-25 "Selecting
the Operation to Modify MLX-R.exe Autostart Settings", and click the
[Execute] button.

CAUTION

Changing the automatic startup and restart behavior of MLX200 PLC
Interface Application (MLX-R.exe) should be done only in consultation
with a customer support person. Incorrect settings may cause the
MLX200 system to not function properly.
7-16

168542-1CD

139 of 206

168542-1CD

MLX200 Software and
Operations

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations
Fig. 7-25: Selecting the Operation to Modify MLX-R.exe Autostart Settings

A pop-up dialog showing the auto-start settings for MLX-R.exe will be
displayed, as shown in Fig.7-26 "Auto-start Settings for MLX-R.exe".
Uncheck the check box that reads “Automatically re-launch MLX-R.EXE
after it shuts down” and click on the [Set] button. If MLX-R.exe is already
running at this point, it can be commanded to restart from the PLC
program or through the MLX200 HMI. However, MLX-R.exe will not restart
since the automatic restart was disabled from the {Maintenance
Operations} screen. At this point the backup operation can be performed.
Disabling the auto-start of MLX-R.exe may also be useful to troubleshoot
persistent connectivity problems or initialization problems.

Fig. 7-26: Auto-start Settings for MLX-R.exe

CAUTION

Once the troubleshooting or backup operation is completed, it is
important to re-enable the automatic re-start of MLX-R.exe. Failure to
do so will cause the MLX200 system to not function as expected. To
re-enable the automatic restart of MLX-R.exe, follow the same
procedure outlined in this section, with the exception that in the
“AutoStart Settings” pop-up dialog (Fig.7-26 "Auto-start Settings for
MLX-R.exe"), make sure the check box next to “Automatically re-launch
MLX-R.EXE after it shuts down” is checked and click on the [Set]
button.
7-17

168542-1CD

140 of 206

7 Configuration and Maintenance of MLX200 Control Module
7.2 Maintenance and Configuration Operations

168542-1CD

MLX200 Software and
Operations
7.2.9.2 Manually Starting MLX-R.exe After Auto-start is Disabled

In situations where the automatic restart of MLX-R.exe is disabled for
troubleshooting purposes, it may be necessary manually start MLX-R.exe.
This can be done by clicking on the “Settings” category on the left side of
the {Maintenance Operations} screen, selecting “Start MLX-R.exe”
operation and clicking on the [Execute] button as shown in Fig.7-27
"Manually Starting MLX-R.exe After its Automatic Restart is Disabled".

Fig. 7-27: Manually Starting MLX-R.exe After its Automatic Restart is
Disabled
7-18

168542-1CD

141 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Appendix A

A.1 MLX200 Add-on Instructions

A.1.1 MLxAbort

The MLxAbort instruction is used to command a controlled stop on all
servo drives, disable the drives, and place the system into
ServosOffAborted state.

Fig. A-1: MLxAbort Instruction

Table A-1: MLxAbort Instruction
Name Data Type Usage Description

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag.
A-1

168542-1CD

142 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.2 MLxEnable

The MLxEnable instruction is used to enable the servos on all axes/robots
and transition the system into Idle state. This must be called before
motions can be commanded on the system.

Fig. A-2: MLxEnable Instruction

Table A-2: MLxEnable Instruction
Name Data Type Usage Description

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag.
A-2

168542-1CD

143 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.3 MLxHold

The MLxHold instruction is used to stop all axes/robots in the current path,
while maintaining the queue of programmed motions. The system will
transition to the Held state after this command. The queued motions can
be restarted using the MLxRestart command.

Fig. A-3: MLxHold Instruction

Table A-3: MLxHold Instruction
Name Data Type Usage Description

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.
A-3

168542-1CD

144 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.4 MLxReset

The MLxReset instruction is used to reset all axes and robots in the
system and transition the state of the system to ServosOffReady where
the system will be ready to enable. The instruction can fail in some
instances where the error state is not removed before resetting (e.g.
leaving an emergency stopped pressed). The instruction will also remove
all motions previously queued.

Fig. A-4: MLxReset Instruction

Table A-4: MLxReset Instruction
Name Data Type Usage Description

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-4

168542-1CD

145 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.5 MLxResetAndHold

The MLxResetAndHold instruction is used to reset the errors in the
system. This instruction will not reset the queue of programmed motions
unlike the MLxReset instruction. The system will transition to
ServosOffHeld state. From the ServosOffHeld state, the programmed
motions can be restarted by first transitioning to the Held state by issuing
the MLxEnable command and then issuing a MLxRestart command.

Fig. A-5: MLxResetAndHold Instruction

Table A-5: MLxResetAndHold Instruction
Name Data Type Usage Description

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-5

168542-1CD

146 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.6 MLxRestart

The MLxRestart instruction is used to restart queued motions when the
system is in the Held state.

Fig. A-6: MLxRestart Instruction

Table A-6: MLxRestart Instruction
Name Data Type Usage Description

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-6

168542-1CD

147 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.7 MLxStop

The MLxStop instruction is used to bring all Axes and Robots in the
system to a controlled stop and then transition to the Idle state.

Fig. A-7: MLxStop Instruction

Table A-7: MLxStop Instruction
Name Data Type Usage Description

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-7

168542-1CD

148 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.8 MLxRobotMoveAxisAbsolute

The MLxRobotMoveAxisAbsolute instruction is used to move each axis of
the robot to the final absolute commanded position as quickly as possible,
with all axes starting and stopping at the same time. While an axis motion
results in the shortest travel time, it does not follow a particular path for the
TCP. An axis move is the least likely to cause errors when recovering from
positions close to travel limits and singularities.The user can specify the
target position as well as desired speed, accel/decel, and jerk parameters
(when using a Jerk-Limited Velocity Profile). These parameters are
specified as a percentage of the max (e.g. 50%).

Fig. A-8: MLxRobotMoveAxisAbsolute Instruction

Table A-8: MLxRobotMoveAxisAbsolute Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

TargetPosition MLxAppData TeachPoint InOut MLxAppDataTeachPoint containing the target
position. This position can be taught from the
{Teach} Screen using the MLX 200 HMI.

TargetType BOOL Input Axis/TCP Position. 0= Axis Position 1= TCP
Position. This will define which data inside the
TeachPoint structure to use. In most cases,
these values will be the same and lead to the
same motion. However, if the data inside the
TeachPoint has been modified manually, this
parameter can be used to point to the new data.

BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in% of maximum.

Acceleration REAL Input Acceleration rate for axis in% of maximum.

Deceleration REAL Input Deceleration rate for axis in% of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished
A-8

168542-1CD

149 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-9

168542-1CD

150 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.9 MLxRobotMoveAxisRelative

The MLxRobotMoveAxisRelative instruction is used to move each axis of
the robot to the final relative commanded position as quickly as possible,
with all axes starting and stopping at the same time. While an axis motion
results in the shortest travel time, it does not follow a particular path for the
TCP. An axis move is the least likely to cause errors when recovering from
positions close to travel limits and singularities. The user can specify the
target position as well as desired speed, accel/decel, and jerk parameters
(when using a Jerk-Limited Velocity Profile). These parameters are
specified as a percentage of the max (e.g. 50%).

Fig. A-9: MLxRobotMoveAxisRelative Instruction

Table A-9: MLxRobotMoveAxisRelative Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

DeltaPosition REAL[7] InOut Target Relative Axis Position. If Robot has less
than 7 axes, only the first n are used where n is
the number of axes for the robot.

BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in % of maximum.

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing
A-10

168542-1CD

151 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-11

168542-1CD

152 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.10 MLxRobotMoveLinearAbsolute

The MLxRobotMoveLinearAbsolute instruction is used to initiate a Linear
motion of the robot TCP in Cartesian space to an absolute target position.
The result is a straight line trajectory for the robot TCP. The user can
specify the target position as well as desired speed, accel/decel, and jerk
parameters (when using a Jerk-Limited Velocity Profile). These
parameters can be specified as either absolute values (e.g. 750 mm/sec)
or a percentage of the max speed (e.g. 50%). The max translational and
rotational speeds can be found in the MLX[].Robot[]. ConfigurationData
data structure.

Fig. A-10: MLxRobotMoveLinearAbsolute Instruction

Table A-10: MLxRobotMoveLinearAbsolute Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

TargetPosition MLxAppData TeachPoint InOut MLxAppDataTeachPoint containing the target
position. This position can be taught from the
{Teach} Screen using the MLX200 HMI

TargetType Bool Input Axis/TCP Position. 0= Axis Position 1= TCP
Position. This will define which data inside the
TeachPoint structure to use. In most cases,
these values will be the same and lead to the
same motion. However, if the data inside the
TeachPoint has been modified manually, this
parameter can be used to point to the new data.

BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in % of maximum.

UseRotationalSpeed BOOL Input Units to use for Speed. 0 = (linear units)/sec, 1=
deg/sec. When set to 1, the speed of a linear
motion between two points is defined as the
time is takes to rotate the product at the defined
rotational speed. The rotation and linear
translation will stop at the same time.
A-12

168542-1CD

153 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-13

168542-1CD

154 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.11 MLxRobotMoveLinearRelative

The MLxRobotMoveLinearRelative instruction is used to initiate a Linear
motion of the robot TCP in Cartesian space to a relative target position
(e.g. a position 100 mm away in the Z direction). The result is a straight
line trajectory for the robot TCP. The user can specify the delta position as
well as desired speed, accel/decel, and jerk parameters (when using a
Jerk-Limited Velocity Profile). These parameters can be specified as
either absolute values (e.g. 750 mm/sec) or a percentage of the max
speed (e.g. 50%). The max translational and rotational speeds can be
found in the MLX[].Robot[].ConfigurationData data structure. In addition,
the user can specify a Coordinate Frame to do the motion relative to:

• 0, World: System performs a linear motion relative to the world frame
using the incremental values found in the DeltaPosition input
parameter.

• 1, Tool: System performs a linear motion relative to the active tool
pose along the tool coordinate system using the incremental values
found in the DeltaPosition input parameter.

• 2, User: System will perform a linear motion relative to the active
user frame using the incremental values found in the DeltaPosition
input parameter.

Fig. A-11: MLxRobotMoveLinearRelative Instruction

Table A-11: MLxRobotMoveLinearRelative Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

DeltaPosition MLxRobotPosition InOut An MLxRobotPosition structure containing the
relative target TCP coordinates and closure
information.

BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in % of maximum.
A-14

168542-1CD

155 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
UseRotationalSpeed BOOL Input Units to use for Speed. 0 = (linear units)/sec, 1=
deg/sec. When set to 1, the speed of a linear
motion between two points is defined as the
time is takes to rotate the product at the defined
rotational speed. The rotation and linear
translation will stop at the same time.

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

CoordFrame DINT Input 0 = World, 1 = Tool, 2 = User

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-15

168542-1CD

156 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.12 MLxRobotMoveCircular

The MLxRobotMoveCircular instruction is used to initiate a Circular Arc
motion of the robot TCP in Cartesian space through two target TCP
Positions. The result is a circular arc trajectory for the robot TCP that uses
the current position as well as the ViaPosition and FinalPosition
parameters to calculate the circular path. The user can specify the target
position as well as desired speed, accel/decel, and jerk parameters (when
using a Jerk-Limited Velocity Profile). These parameters can be specified
as either absolute values (e.g. 750 mm/sec) or a percentage of the max
(e.g. 50%). The max translational and rotational speeds can be found in
the MLX[].Robot[].ConfigurationData data structure.

The rotational motion of the TCP is defined by the RotationType
parameter as follows:

• 0 = Use initial orientation (no rotational motion)

• 1 = Interpolate initial and final orientation (i.e. interior orientation is
ignored)

• 2 = Variable Interpolation (interpolate interior orientation position)

Fig. A-12: MLxRobotMoveCircular

NOTE
The case of Holding and Restarting a circular motion with
RotationType = 2, the restarted motion will interpolate
directly to the final orientation (i.e. similar to
RotationType=1).
A-16

168542-1CD

157 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Table A-12: MLxRobotMoveCircular
Name Data Type Usage Description

MLxRobotMoveCircular MLxRobotMoveCircular InOut

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ViaPosition MLxAppDataTeachPoint Input VAn MLxRobotPosition structure containing the
target TCP coordinates and closure information
for the circular arc Via Position.

FinalPosition MLxAppDataTeachPoint InOut An MLxRobotPosition structure containing the
target TCP coordinates and closure information
for the circular arc Final Position.

Angle REAL Input Angle of the circular arc to draw. For example,
360.0 will draw a full circle while 720.0 will draw
two circles. If set to 0.0, the circular arc will
interpolate the angle to the final position.

RotationType REAL Input 0 = Use initial orientation (no rotational motion),
1 = Interpolate initial and final orientation (i.e.
middle orientation is ignored), 2 = Variable
Interpolation (interpolate interior orientation
position)

BlendFactor DINT Input Valid values: -1-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled.

Sts_DN BOOL Output Done bit. This will turn HIGH when the
command has been processed and added to the
motion queue. The rung must stay enabled until
this bit is active.

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit. HIGH if this motion is currently
executing.

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed
A-17

168542-1CD

158 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.13 MLxRobotJogAxes

The MLxRobotJogAxes instruction is used to manually jog the axes of the
robot. The Directions parameter is an array the defines the direction to jog
each axes with 1 being in the positive direction and -1 being in the
negative direction. The Directions parameter is a DINT[7] array with only
the first n parameters being used where n is the number of axes in the
robot. The Speed is defined as a % of maximum speed.

If using the MLX200 HMI, the {Teach} Screen can be used instead of
directly calling this AOI from application logic.

Fig. A-13: MLxRobotJogAxes Instruction

Table A-13: MLxRobotJogAxes Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

Directions DINT[7] InOut Defines the job directions for each robot axis: 0 -
Positive, 1 - Negative. If robot has less than 7
axes remaining values are ignored.

Speed REAL Input Speed to move axis in % of maximum.

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-18

168542-1CD

159 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.14 MLxRobotJogAxesToPoint

The MLxRobotJogAxesToPoint instruction is used to manually jog the
robot to a target axes position in axis-interpolated motion. The TargetAxes
parameter defines the target position, and the Speed is defined as a % of
maximum speed.

If using the MLX 200 HMI, the {Teach} Screen can be used instead of
directly calling this AOI from application logic.

Fig. A-14: MLxRobotJogAxesToPoint Instruction

Table A-14: MLxRobotJogAxesToPoint Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

TargetPoisition MLxAppDataTeachPoint InOut Target Position to jog the robot to, in Axis jog
mode

Speed REAL Input Speed to move axis in % of maximum.

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-19

168542-1CD

160 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.15 MLXRobotJogTCP

The MLxRobotJogTCP instruction is used to manually jog the TCP of the
robot. The Directions parameter is an array the defines the direction to jog
each coordinate direction (X,Y,Z,RX,RY,RZ). The Speed can be specified
as either absolute values (e.g. 750 mm/sec) or a percentage of the max
speed (e.g. 50%) depending on the SpeedUnits value. The CoordFrame
parameter defines which Coordinate Frame to perform the jogging in:

• 0 - World Frame

• 1 - Tool Frame

• 2 - User Frame

If using the MLX 200 HMI, the {Teach} Screen can be used instead of
directly calling this AOI from application logic.

Fig. A-15: MLxRobotJogTCP Instruction
A-20

168542-1CD

161 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Table A-15: MLxRobotJogTCP Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

Directions DINT[6] InOut Defines the job directions for each robot axis: 0 -
Positive, 1 - Negative. If robot has less than 7
axes remaining values are ignored.

Speed REAL Input Speed to move axis in % of maximum.

UseRotationalSpeed BOOL Input Units to use for Speed 0 = (linear units)/sec, 1=
deg/sec. When set to 1, the speed of a linear
motion between two points is defined as the
time is takes to rotate the product at the defined
rotational speed. The rotation and linear
translation will stop at the same time

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

CoordFrame DINT Input 0 = World, 1 = Tool, 2 = User

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-21

168542-1CD

162 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.16 MLxRobotJogTCPToPoint

The MLxRobotJogTCPToPoint instruction is used to manually jog the
robot to a target TCP position. The TargetTCP parameter contains the
(X,Y,Z,RX,RY,RZ) position of the target as well as closure information. The
Speed can be specified as either absolute values (e.g. 750 mm/sec) or a
percentage of the max speed (e.g. 50%) depending on the SpeedUnits
value.

If using the MLX 200 HMI, the {Teach} Screen can be used instead of
directly calling this AOI from application logic.

Fig. A-16: MLxRobotJogTCPToPoint Instruction

Table A-16: MLxRobotJogTCPToPoint Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

TargetPoisition MLxAppDataTeachPoint InOut Target Position to jog the robot to, in Axis jog
mode

Speed REAL Input Speed to move axis in % of maximum.

UseRotationalSpeed BOOL Input Units to use for Speed 0 = (linear units)/sec, 1=
deg/sec. When set to 1, the speed of a linear
motion between two points is defined as the
time is takes to rotate the product at the defined
rotational speed. The rotation and linear
translation will stop at the same time

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-22

168542-1CD

163 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.17 MLxRobotCoordinateTransform

The MLxRobotCoordinateTransform instruction can be used to update the
Axis/TCP position of a Teach Point or to convert a TCP position between
World and User coordinates.

Fig. A-17: MLxRobotCoordinateTransform Instruction

Table A-17: MLxRobotCoordinateTransform Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

TeachPoint MLxAppDataTeachPoint InOut MLxAppDataTeachPoint structure. Either the
Axis or TCP position inside this structure will be
updated depending on the TransformType
value.

TransformType DINT Input 0 = Convert Axis Coordinates to TCP
Coordinates,
1 = Convert TCP Coordinates to Axis
Coordinates,
2 = Convert TCP in World Frame to Active User
Frame,
3 = Convert TCP in Active User Frame to World
Frame.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.
A-23

168542-1CD

164 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.18 MLxRobotSetBasePose

The MLxRobotSetBasePose instruction is used to set the position and
orientation of the robot with respect to the World Frame. Changing a
Robot's Base Pose will not cause any motion but will change the TCP
position reported from MLxRobotCoordinateTransform. This is particularly
useful in cells with multiple robots where you want TCP positions to be
correctly reported in the work cell's World Frame.

Fig. A-18: MLxRobotSetBasePose Instruction

Table A-18: MLxRobotJogTCPToPoint Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

BasePose REAL[6] InOut Base Pose Value (X, Y, Z, RX, RY, RZ)

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-24

168542-1CD

165 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.19 MLxRobotSetCubicIZByCenterPoint

The MLxRobotSetCubicIZByCenterPoint instruction is used to define a
Cubic IZ (Interference Zone) by defining a Center Point and the
Dimension around it (length, width, height). The IZAction parameter is
used to define the action of the IZ:

• 0 - When the IZ is entered, the bit in MLX[].Robot[].CubicIZStatus
corresponding to the ZoneID will turn high. This can then be used in
application logic to perform or prevent certain operations while the
robot is inside the zone.

• 1 - When the TCP attempts to enter the IZ, the Robot will Abort and
transition to ServosOffAborted state. This is useful when the Robot
has delicate items in the workspace that should be avoided.

• 2 - Deactivate the current IZ.

Fig. A-19: MLxRobotSetCubicIZByCenterPoint Instruction

Table A-19: MLxRobotSetCubicIZByCenterPoint Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ZoneID DINT Input Internal number identifier for IZ. This number will
be used in the error messages

CenterPoint REAL[6] InOut Defines position of coordinate frame to be the
center of the IZ.

Dimensions REAL[3] InOut Defines the distance along each of the Center
Points axes to define the cube. See User Guide
for more information.

IZAction DINT Input 0 = MonitorOnly, 1= StopMotion, 2 = Clear IZ

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-25

168542-1CD

166 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.20 MLxRobotSetCubicIZByTwoCorners

The MLxRobotSetCubicIZByTwoCorners instruction is used to define a
Cubic IZ (Interference Zone) by defining two corners of a cube in
Cartesian space. The IZAction parameter is used to define the action of
the IZ:

• 0 - When the IZ is entered, the bit in MLX[].Robot[].CubicIZStatus
corresponding to the ZoneID will turn high. This can then be used in
application logic to perform or prevent certain operations while the
robot is inside the zone.

• 1 - When the TCP attempts to enter the IZ, the Robot will Abort and
transition to ServosOffAborted state. This is useful when the Robot
has delicate items in the workspace that should be avoided.

• 2 - Deactivate the current IZ.

Fig. A-20: MLxRobotSetCubicIZByTwoCorners Instruction

Table A-20: MLxRobotSetCubicIZByTwoCorners Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ZoneID DINT Input Internal number identifier for IZ. This number will
be used in the error messages

Corner1 REAL[3] InOut [X, Y, Z] position of first corner.

Corner2 REAL[3] InOut [X, Y, Z] position of second corner.

IZAction DINT Input 0 = MonitorOnly, 1= StopMotion, 2 = Clear IZ

CoordFrame DINT Input 0 = Robot 1 = Base,
2 = User

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-26

168542-1CD

167 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.21 MLxRobotSetFrameShift

The MLxRobotSetFrameShift instruction allows a user to execute a
Cartesian offset that is applied to subsequent moves. This is useful for
defining programmatic patterns such as a pelletizing application where the
first product is located, and the rest of the positions are offsets from that
position. The CoordFrame parameter defines the frame to shift the motion
relative to:

• 0 - World Frame

• 1 - [UNUSED]

• 2 - User Frame (note: by default, the active User Frame is the same
as the World Frame. Use the MLxRobotSetUserFrame instruction to
set a new User Frame).

Fig. A-21: MLxRobotSetFrameShift Instruction

Table A-21: MLxRobotSetFrameShift Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

FrameShift REAL[6] InOut Frame Shift Value (X, Y, Z, RX, RY, RZ)

CoordFrame DINT Input 0 = Robot 1 = Base,
2 = User

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-27

168542-1CD

168 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.22 MLxRobotSetToolProperties

The MLxRobotSetToolProperties instruction is used to update the offset
between the Tool Plate and TCP position of the Robot. The ToolPose
parameter defines the (X,Y,Z,RX,RY,RZ) offsets for the new tool position.
A new Tool Pose will change the TCP position of the Robot reported from
MLxRobotCoordinateTransform and will also affect the TCP positions
passed into Motion instructions as parameters. The Tool Pose is also used
when doing Relative or Jogging motions in the Tool Frame.

Fig. A-22: MLxRobotSetToolProperties Instruction

Table A-22: MLxRobotSetToolProperties Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ToolNumber DINT Input Index of the tool to use from the
ApplicationDataTools[] array

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

ApplicationData MLxApplicationData InOut The MLxApplicationData Control Module scope
tag

MLX MLxData InOut The MLxData Control Module Scope tag
A-28

168542-1CD

169 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.23 MLxRobotSetUserFrame

The MLxRobotSetUserFrame instruction is used to set the Active User
Frame for a Robot. The UserFrame parameter is a REAL[6] array
containing the (X,Y,Z,RX,RY,RZ) coordinates of the User Frame in World
Coordinates. Changing the active User Frame will affect Relative and
Jogging Motions in the User Frame.

Fig. A-23: MLxRobotSetUserFramer Instruction

Table A-23: MLxRobotSetFrameShift Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

UserFrameNumber DINT Input Index of the user frame to use, from the
ApplicationDataUserFrames[] array

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Input If the instruction fails, this parameter contain the
error code. Call MLxGetErrorDetail to get
detailed error information.

ApplicationData MLxApplicationData InOut The MLxApplicationData Control Module scope
tag

MLX MLxData InOut The MLxData Control Module Scope tag
A-29

168542-1CD

170 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.24 MLxRobotCollisionDetection

The MLxRobotCollisionDetection instruction is used to perform various
actions for Collision Monitoring and Detection.

Valid actions are:

• 0 - Start Measurement Mode. This action will begin internally
recording torque disturbance values. In this mode, the Torque
Disturbance parameter is ignored and the system will not abort at
detected collisions.

• 1 - Start Execution Mode. This action will turn on Collision Detection
monitoring with the provided Allowable Torque Disturbance values.
In this mode, the system will abort if a disturbance is measured
larger than the Allowable Disturbance.

• 2 - Stop Collision Monitoring. This will turn off Collision Monitoring
and return the largest disturbance value for each axis since Collision
Monitoring was started (i.e. Action = 0 or 1).

• 3 - Get Maximum Torque Disturbance. This will return the current
maximum disturbance value for each axis but will not affect the
operation of Collision Monitoring.

• 4 - Reset Maximum Torque Disturbance. This will reset the current
internal maximum disturbance values for each axis but will not affect
the operation of Collision Monitoring.

Fig. A-24: MLxRobotCollisionDetection Instruction
A-30

168542-1CD

171 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
Table A-24: MLxRobotCollisionDetection Instruction
Name Data Type Usage Description

MLxRobotCollisionDetection MLxRobotCollisionDetection InOut

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

CollisionFile DINT Input The Collision File to use. Valid values are
0 to ApplicationData.NumberOfCollision
Files-1

Action DINT Input Use this to define the action taken by the
instruction. Valid actions are:
0 - Start Measurement Mode.
1 - Start Execution Mode.
2 - Stop Collision Monitoring.
3 - Get Maximum Torque Disturbance.
4 - Reset Maximum Torque Disturbance.

ApplicationData MLxApplicationData InOut The MLxApplicationData Control Module
scope tag

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long
as the ladder rung is enabled

Sts_DN BOOL Output Done bit. This will turn HIGH when the
command has been processed. The rung
must stay enabled until this bit is active.

Sts_ER BOOL Output Error bit. Indicates an error during
instruction execution. If using HMI, view
detailed error message on {HMI} screen.
Otherwise, call MLxGetErrorDetail for
more information.
A-31

168542-1CD

172 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.25 MLxRobotConvSyncStart

MLxRobotConvSyncStartt is used to initialize a conveyor tracking
operation. This AOI will wait until a product has passed the
ConveyorStartPosition and then sync with the conveyor. All commands
performed after an MLxRobotConvSyncStartt command will track the
conveyor until an MLxConvSyncStop is called

Fig. A-25: MLxRobotConvSyncStart Instruction

Table A-25: MLxRobotConvSyncStart Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ConveyorNumber DINT Input The number of the conveyor corresponding to
the data in ApplicationDataConveyorData Valid
values are 0-3

UserFrameNumber DINT Input The User Frame number that stores the X
direction for the conveyor. Note: this User
Frame must be defined in the ApplicationData,
but does not need to be the active User Frame

ConveyorStartPosition REAL Input This the position in mm at which point the
system will initialize conveyor tracking
operations.

ConveyorTeachPositon REAL Input This is the position in mm where the teach
points for the following motion commands were
taught

ApplicationData MLxApplicationData InOut The MLxApplicationData Control Module scope
tag

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

Sts_OL BOOL OutPut This bit turns high if the first object in the queue
is past the MLX[] ConveyorData[],
MaxStartPosition value
A-32

168542-1CD

173 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.26 MLxRobotConvSyncStop

 MLxRobotConvSyncStop is used to stop conveyor tracking operations
and update the object queue.

Fig. A-26: MLxRobotConvSyncStop Instruction

Table A-26: MLxRobotConvSyncStop Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ConveyorNumber DINT Input The number of the conveyor corresponding to
the data in ApplicationDataConveyorData Valid
values are 0-3

ConveyorStartPosition REAL Input This the position in mm at which point the
system will initialize conveyor tracking
operations.

KeepInQueue BOOL Input If set to 1, this part will be moved to the robot
specified in NewRobotQueue. If set to 0, the
part will be removed from the queue and no
longer tracked.

NewRobotQueue DINT Input If KeepInQueue is set to 1, this parameter holds
the robot to move the part to. If
NewRobotQueue is the same as RobotNumber,
the part is held in the current robot's queue.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.
A-33

168542-1CD

174 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.27 MLxRobotConvSyncStopWithAxisMot

The MLxRobotConvSyncStopWithAxisMot command is used to stop
conveyor tracking operations and blend directly into an Absolute Axis
motion.

Fig. A-27: MLxRobotConvSyncStopWithAxisMot Instruction

Table A-27: MLxRobotConvSyncStopWithAxisMot Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ConveyorNumber DINT Input The number of the conveyor corresponding to
the data in ApplicationDataConveyorData Valid
values are 0-3

ConveyorPosition DINT Input This value must be equal to the CurrentValue of
the conveyor

KeepInQueue BOOL Input If set to 1, this part will be moved to the robot
specified in NewRobotQueue. If set to 0, the
part will be removed from the queue and no
longer tracked.

NewRobotQueue DINT Input If KeepInQueue is set to 1, this parameter holds
the robot to move the part to. If
NewRobotQueue is the same as RobotNumber,
the part is held in the current robot's queue.

TargetPosition MLxAppDataTeachPoint InOut MLxAppDataTeachPoint containing the target
position. This position can be taught from the
{Teach} Screen using the MLX200 HMI

TargetType BOOL Input Axis/TCP Position. 0= Axis Position 1= TCP
Position. This will define which data inside the
TeachPoint structure to use. In most cases,
these values will be the same and lead to the
same motion. However, if the data inside the
TeachPoint has been modified manually, this
parameter can be used to point to the new data.
A-34

168542-1CD

175 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in % of maximum.

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-35

168542-1CD

176 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.28 MLxRobotConvSyncStopWithLinearMot

The MLxRobotConvSyncStopWithLinearMot command is used to stop
conveyor tracking operations and blend directly into an Absolute Linear
motion

Fig. A-28: MLxRobotConvSyncStopWithLinearMot Instruction

Table A-28: MLxRobotConvSyncStopWithLinearMot Instruction
Name Data Type Usage Description

RobotNumber DINT Input The robot commanded by this instruction
instance. Valid values are 0 to
MLX[].NumberOfRobots-1.

ConveyorNumber DINT Input The number of the conveyor corresponding to
the data in ApplicationDataConveyorData Valid
values are 0-3

ConveyorPosition DINT Input This value must be equal to the CurrentValue of
the conveyor

KeepInQueue BOOL Input If set to 1, this part will be moved to the robot
specified in NewRobotQueue. If set to 0, the
part will be removed from the queue and no
longer tracked.

NewRobotQueue DINT Input If KeepInQueue is set to 1, this parameter holds
the robot to move the part to. If
NewRobotQueue is the same as RobotNumber,
the part is held in the current robot's queue.

TargetPosition MLxAppDataTeachPoint InOut MLxAppDataTeachPoint containing the target
position. This position can be taught from the
{Teach} Screen using the MLX200 HMI

TargetType BOOL Input Axis/TCP Position. 0= Axis Position 1= TCP
Position. This will define which data inside the
TeachPoint structure to use. In most cases,
these values will be the same and lead to the
same motion. However, if the data inside the
TeachPoint has been modified manually, this
parameter can be used to point to the new data.
A-36

168542-1CD

177 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
BlendFactor DINT Input Valid values: 0-8. This will define how much this
motion should be blended into the next motion.
Note: an additional motion will need to be added
to the queue for this parameter to work correctly.
See User Guide for detailed instructions on
using this parameter.

Speed REAL Input Speed to move axis in % of maximum.

UseRotationalSpeed BOOL Input Units to use for Speed. 0 = (linear units)/sec, 1=
deg/sec. When set to 1, the speed of a linear
motion between two points is defined as the
time is takes to rotate the product at the defined
rotational speed. The rotation and linear
translation will stop at the same time.

SpeedUnits DINT Input 0 = % Maximum, 1 = Absolute Value in position
units/sec

Acceleration REAL Input Acceleration rate for axis in % of maximum.

Deceleration REAL Input Deceleration rate for axis in % of maximum.

MLX MLxData InOut The MLxData Control Module Scope tag

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_IP BOOL Output In process bit. This Instruction is actively
executing, but another instruction may be
commanding the active movement.

Sts_AC BOOL Output Active bit HIGH if this motion is currently
executing

Sts_PC BOOL Output Process complete bit. HIGH if this motion has
reached the end of its commanded trajectory.

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

PercentComplete SINT Output Percentage of motion that is completed

Name Data Type Usage Description
A-37

168542-1CD

178 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.29 MLxGetErrorDetail

The MLxGetErrorDetail instruction is used to retrieve detailed error
information from the MLX200 Control Module. This error information will
populate the passed in MLxErrorDetail structure that contains the detailed
error message as well as fields describing the Type of error, Origin of
error, Remedy, and others. Note: if using the MLX200 HMI, the error
details should be automatically updated from inside the HMI Task.

Fig. A-29: MLxGetErrorDetail

Table A-29: MLxGetErrorDetail Instruction
Name Data Type Usage Description

ErrorDetail MLxErrorDetail InOut An MLxErrorDetail parameter that will contain
the detailed error information

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-38

168542-1CD

179 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.30 MLxGetModuleInfo

The MLxGetModuleInfo instruction is used to retrieved information about
the configuration of the connected MLX200 Robot Control Module. This
information includes the type of Control Module, the IP and MAC
addresses, and the firmware version. This information will get
automatically populated during initialization.

Fig. A-30: MLxGetModuleInfo

Table A-30: MLxGetModuleInfo Instruction
Name Data Type Usage Description

ModuleInfo MLxModuleInfo InOut An MLxModuleInfo data structure that will
contain the MLX200 Control Module Info.

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-39

168542-1CD

180 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.31 MLxReadDigitalInputs

The MLxReadDigitalInputs instruction is used to read digital inputs that
have been wired into a servo drive. These digital inputs will need to be
wired into the hardware panel to be used. When this AOI is called, the
IO1-IO4 values will map to digital inputs defined for the servo drive type.
On a Yaskawa SigmaV drive IO1=SI0, IO2=SI1, IO3=SI2 and IO4=SI3.

Fig. A-31: MLxReadDigitalInputs lnstruction

Table A-31: MLxReadDigitalInputs Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-number O Robots

AxisNumber DINT Input Robot to read digital inputs from Range is
0-Robot[]. ConfigurationDataNumberOfAxes

IO1 BOOL Output Mapped to SI0 on Yaskawa Sigma
V-drives.

IO2 BOOL Output Mapped to SI1 on Yaskawa Sigma
V-drives.

IO3 BOOL Output Mapped to SI2 on Yaskawa Sigma
V-drives.

IO4 BOOL Output Mapped to SI3 on Yaskawa Sigma
V-drives.

MLX MLxData InOut Control Module-scope DataStructure Containing
information for MLXsystem.
A-40

168542-1CD

181 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.32 MLxWriteDigitalOutputs

The MLxWriteDigitalOutputs instruction is used to write digital outputs that
have been wired into a servo drive. When this AOI is called, the IO1-IO4
values will map to digital outputs defined for the servo drive type. For
example, on a Yaskawa SigmaV drive IO1=SO1, IO2=SO2, IO3=SO3 and
IO4 is unused.

Fig. A-32: MLxWriteDigitalOutputs lnstruction

Table A-32: MLxWriteDigitalOutputs Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-numberO Robots

AxisNumber DINT Input Robot to read digital inputs from Range is
0-Robot[]. ConfigurationDataNumberOfAxes

IO1 BOOL Input Mapped to SI0 on Yaskawa Sigma
V-drives.

IO2 BOOL Input Mapped to SI1 on Yaskawa Sigma
V-drives.

IO3 BOOL Input Mapped to SI2 on Yaskawa Sigma
V-drives.

IO4 BOOL Input Unused

MLX MLxData InOut Control Module-scope DataStructure Containing
information for MLX system.
A-41

168542-1CD

182 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.33 MLxRobotGetHomeOffsets

The MLxRobotGetHomeOffsets is used to retrieve the current home
positions for each robot axis.

Fig. A-33: MLxRobotGetHomeOffsets lnstruction

Table A-33: MLxRobotGetHomeOffsets Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-numberO Robots

OffsetType DINT Input Specifies the type of offset value to retrieve.
0 = Get the offsets measured at current robot
location, 1 = Get the home offset values
currently in use by the system

Offset DINT[7] InOut Contains the retrieved offset values

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Output If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-42

168542-1CD

183 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.34 MLxRobotSetHomeOffsets

The MLxRobotSetHomeOffsets is used to update the Home Position of
the robot. In order for the new home values to take place, the system must
be restarted after calling this AOI.

Fig. A-34: MLxRobotGetHomeOffsets lnstruction

Table A-34: MLxRobotGetHomeOffsets Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-numberO Robots

OffsetType DINT Input Specifies the type of offset value to retrieve. 0 =
Get the offsets measured at current robot
location, 1 = Get the home offset values
currently in use by the system

Offset DINT[7] InOut Contains the retrieved offset values

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

ErrorCode DINT Inputs If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.

MLX MLxData InOut The MLxData Control Module Scope tag
A-43

168542-1CD

184 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.35 MLxRobotGetProperties

The MLxRobotGetProperties instruction is used to read the configuration
parameters of a Robot. These properties will automatically populate the
MLX[].Robot[].ConfigurationData as well as the individual axis
configurations inside MLX[].Robot[].RobotAxes[]. This AOI will
automatically run during system initialization to populate this data.

Fig. A-35: MLxRobotGetProperties lnstruction

Table A-35: MLxRobotGetProperties Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-numberO Robots

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

MLX MLxData InOut The MLxData Control Module Scope tag

ErrorCode DINT Inputs If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.
A-44

168542-1CD

185 of 206

168542-1CD

MLX200 Software and
Operations

Appendix A
A.1 MLX200 Add-on Instructions
A.1.36 MLxRobotSetProperties

The MLxRobotSetProperties instruction is used to update the Robot
Configuration Data (e.g. TCP speed/acceleration limits, Axis position/
speed/acceleration limits, etc). This data should be directly changed
inside the MLX[].Robot[].ConfigurationData and
MLX[].Robot[].RobotAxes[].ConfigurationData structure before calling the
AOI. Then, when this AOI is called, the new configuration parameters will
be stored; however, these parameters will not persist when the system is
restarted. If different limits are desired, call this AOI during application
initialization

Fig. A-36: MLxRobotSetProperties lnstruction

Table A-36: MLxRobotSetProperties Instruction
Name Data Type Usage Description

RobotNumber DINT Input Robot to read digital inputs from Range is
0-numberO Robots

Sts_EN BOOL Output Enable bit. This bit will stay high as long as the
ladder rung is enabled

Sts_DN BOOL Output Done bit. This bit will turn high when the
instruction has finished

Sts_ER BOOL Output Error bit. Indicates an error during instruction
execution. If using HMI, view detailed error
message on {HMI} screen. Otherwise, call
MLxGetErrorDetail for more information.

MLX MLxData InOut The MLxData Control Module Scope tag

ErrorCode DINT Inputs If the instruction fails, this parameter will contain
the error code. Call MLxGetErrorDetail to get
detailed error information.
A-45

168542-1CD

186 of 206

Appendix A
A.1 MLX200 Add-on Instructions

168542-1CD

MLX200 Software and
Operations
A.1.37 MLxSetGlobalParameter

The MLxSetGlobalParamer is for setting an MLX Global Parameter. The
type of parameter can be set using the ParameterType field. Available
parameter types include:

• 0 - Speed Scale % (5-100). This sets the global speed scale for all
motions. Default value is 100.

Table A-37: MLxSetGlobalPrameter Instructions

NOTE
The MLxSetGlobalParameter only affects motions that are
placed in cue after entering the instructions. To slow down
motions immediately enter instruction MLxHold,
MLxSetGlobalParameter, MlxRestart.

NOTE Contact the Add-On Instruction developer for questions or
problems with this instruction

Name Data Type Usage Description

MLxSetGlobalParameter MLxSetGlobalParameter InOut

ParameterType DINT Input
Type of global parameter to set. Options:
0 - Speed Scale % (5-100)

ParameterValue REAL Input Value of the global parameter.

Sts_EN BOOL Output
Enable bit. This bit will stay high as long as the
ladder rung is enabled.

Sts_DN BOOL Output
Done bit. This bit will turn high when the
instruction has finished.

Sts_ER BOOL Output
Error bit. Indicates an error during instruction
execution. Use MLxGetSystemErrorDetail for a
detailed error message.

MLX MLxData InOut The MLxData Controller Scope tag.
A-46

168542-1CD

187 of 206

168542-1CD

MLX200 Software and
Operations

Appendix B
B.1 MLX200 Control Module Performance Results and Memory Usage
Appendix B

B.1 MLX200 Control Module Performance Results and

Memory Usage

The following tables contain basic performance results measured running
MLX200 on a 1756-L75 ControlLogix Controller, an L35E CompactLogix
Controller (old generation) and an L27ERM CompactLogix Controller
(newer generation). These results will vary depending on the Controller
model in use, but should provide a general understanding of the impact
and trade-offs. The Motion Instruction Timing Results measure the latency
between a MLX200 AOI scanning and the MLX200 Controller Module
acknowledging receipt of the command (i.e. round-trip communication).
The CPU Load is measured using the Logix5000 Task Monitor.

Table B-1: Performance Results on ControlLogix 1756-L75

Table B-2: Performance Results on ControlLogix L35E

Table B-3: Performance Results on ControlLogix L27ERM

Test Description Average
(ms)

Min.
(ms)

Max.
(ms)

Std.
Dev.
(ms)

CPU
Load

1.0 ms RPI, 2.0 ms Task 7.541 3.84 9.92 1.119 23 - 24%

2.0 ms RPI, 2.0 ms Task 6.936 3.84 9.984 1.535 23 - 24%

1.0 ms RPI, 5.0 ms Task 11.204 9.728 14.976 2.198 9 -10%

2.0 ms RPI, 5.0 ms Task 11.042 9.742 14.972 2.098 9 -10%

Test Description Average
(ms)

Min.
(ms)

Max.
(ms)

Std.
Dev.
(ms)

CPU
Load

1.0 ms RPI, 3.0 ms Task 9.579 8.512 12.288 1.297 54 - 55%

2.0 ms RPI, 3.0 ms Task 9.880 38.192 15.072 1.151 54 - 55%

1.0 ms RPI, 5.0 ms Task 14.383 9.296 19.856 1.513 23 - 24%

2.0 ms RPI, 5.0 ms Task 14.405 9.536 19.904 1.455 23 - 24%

NOTE
A 2ms MLX Task was causing Task Overruns on the L35E
CompactLogix. This value was changed to 3 ms for these
tests.

Test Description Average
(ms)

Min.
(ms)

Max.
(ms)

Std.
Dev.
(ms)

CPU
Load

1.0 ms RPI, 2.0 ms Task 4.883 3.648 7.782 1.016 26 - 27%

2.0 ms RPI, 2.0 ms Task 3.940 3.648 5.920 0.294 26 - 27%

1.0 ms RPI, 5.0 ms Task 9.897 9.672 10.08 0.037 10 - 11%

2.0 ms RPI, 5.0 ms Task 9.900 9.728 10.064 0.034 10 - 11%
B-1

168542-1CD

188 of 206

Appendix B
B.1 MLX200 Control Module Performance Results and Memory Usage

168542-1CD

MLX200 Software and
Operations
The below figure shows the memory used by an empty MLX200 project
(all needed AOIs, UDTs, Tasks included but not application data or tasks)

Fig. B-1: Memory Usage by an Empty MLX200 Control Module

NOTE
The included project memory usage may be slightly higher
as they will have the Example Applications already added.
This memory shows the usage before any application data
is included.
B-2

168542-1CD

189 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
Appendix C

C.1 MLX200 Control Module Error Code List

Table C-1: Error Code List
MLx
Error #

OEM
Error #

Message Description Remedy

0 0 No Error Nothing to remedy.

12 12 File I/O Error Missing or Corrupt file. Verify file location and existence.

13 13 Fatal Internal
Error

Error details. Restart system and contact customer
support if error persists.

14 14 License
Verification
Failed

Error details. Retrieve log files and verify features
in Info.log.

15 15 Alarm File
Error.

An error occurred loading the Alarm
data file.

Restart system and contact customer
support if error persists.

16 16 Configuration
File Loading
Failed

An error occurred loading the MLX
configuration files.

Consult log files and contact
customer support if problem persists.

17 17 Hardware
Initialization
Failed

An error occurred while initializing
hardware.

Check all power and communications
connections. Consult log files.

18 18 Control Module
Initialization
Failed

An operation was attempted, but the
Control Module was not initialized.

Consult log files and restart MLX200
Control Module.

19 19 System Already
Initialized

Initialize function was called on a
Control Module that was already
initialized.

Ensure that Initialize function of
Control Module is not called multiple
times.

20 20 Invalid Index
passed into a
command or
instruction

An invalid index has been passed
into a command or instruction.

Ensure that indices passed into the
API are within limits.

21 21 Invalid
Parameter
passed into a
command or
instruction

An invalid parameter has been
passed into a command or
instruction.

Ensure that parameters passed into
the API are valid.

23 23 Motion Group
Initialization
Failed

The Motion Group referenced is not
initialized.

Ensure that the Motion Group is
initialized before accessing it.

24 24 Vector or Matrix
Size Mismatch

The provided Vector or Matrix is the
incorrect size.

Call API again with correctly sized
object.

25 25 Feature Not
Supported

The requested feature is not
supported or enabled.

Retrieve log files and verify features
in Info.log.

26 26 Motion Aborted The Motion was aborted due to error
in a previous motion segment or
safety signal event.

Consult alarm queue to determine
what motion caused an error.

27 27 State Machine
Initialization
Failed

An error occurred while initializing
state machine.

Review log files to identify what
caused the error.

28 28 State Machine
Internal Failure

The State Machine encountered an
unexpected event.

Consult log files to identify what
caused the error
C-1

168542-1CD

190 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
29 29 Command Not
Allowed.

The requested command is not
allowed in current state or mode.

Review the documentation to verify
what commands are allowed in each
state.

30 30 Command
Failed

The requested command failed to
execute in the current state.

Consult the log file and alarms queue
to determine the cause of failure.

31 31 Invalid Control
Module Mode

The requested operation is invalid in
the current Control Module operation
mode.

Hardware operations are allowed
only when the Control Module
operation mode is
MLX200_HARDWARE_MODE.

32 32 Command
Ignored

No action was required to complete
requested state change.

No action required.

33 33 Data File Error An error occurred while initializing
the persisted servo data.

Restart system and contact customer
support if problem persists.

34 34 Last Enabled
Position
Validation Error

A discrepancy with last enabled
position and the current actual
position was detected.

Verify home position or recalibrate
home position.

35 35 Version
Mismatch
Detected

The versions of MLX-R and MLX-D
do not match for this system.

Verify MLX-R and MLX-D version
inside MLX[].MLxControllerInfo.

36 36 Error
processing
MLX Tuning
Parameter
Configuration

An error has occurred processing the
MLxTuningParameters.dat file.

Verify validity of
MLxTuningParameters.dat and
contact customer support if problem
persists.

100 100 Hardware
Initialization
Failed

Error connecting to hardware control
panel.

Verify that the servo panel and servo
drives are powered on, and that the
EtherCAT cable is securely
connected on both ends.

101 101 Hardware
Initialization
Failed

EtherCAT bus configuration does not
match the configuration file.

Verify that all the servo drives and
auxilliary devices on EtherCAT
network are powered on, and that the
hardware configuration (ENI) files are
correct.

102 102 Hardware
Initialization
Failed

Hardware configuration (ENI) file not
found.

Verify that the hardware configuration
(ENI) files are present in the control
module. Copy the configuration files
from backup if available or contact

103 103 Hardware
Initialization
Failed

Hardware configuration (ENI) file
format incorrect.

Verify that the hardware configuration
(ENI) files in the control module are
not corrupted. Copy the configuration
files from backup if available or
contact

104 104 Hardware
Initialization
Failed

Encoder connection error reported
on one or more of the servo drives.

Verify that the encoder cable is
plugged in securely at both ends.
Verify that the 24V power supply and
the associated fuses or circuit
breakers are not tripped.

105 105 Hardware
Initialization
Failed

Servo Parameters on one of the
servo drives appear to be not set
correctly.

Contact support to reload drive
parameters. This error typically
occurs when a servo drive is
replaced.

106 106 Hardware
Initialization
Failed

SetupDrive: Fault reset on failed on
one of the servo drives.

Try power cycling the hardware
control panel. If the problem persists,
contact support with the error
message and logs.

MLx
Error #

OEM
Error #

Message Description Remedy
C-2

168542-1CD

191 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
205 205 Communication
Error PLC1
Ethernet Error:
205(0)

Fuji Teach Pendant is not able to
communicate with the PLC

NOTE: This error message appears
on the Fuji Pendant screen.

Verify project setting match actual IP
settings of Teach Pendant and the
PLC in use.
Verify power is applied to all units
and Ethernet cabling is connected.

Reference the “MLX200 Hardware
Installation & Software Upgrade
Manual” (168283-1CD) - Chapter 11
“Teach Pendant Software Upgrade
Procedure” for project configuration
and troubleshooting.

300 300 Motion Planner
Error: Invalid
Parameter

Invalid Parameter Passed to Motion
Planner.

Retrigger command or instruction
with valid parameter value.

301 301 Axis Position
Travel Limit
Reached

Axis Position Travel Limit Reached. Change the commanded position to
avoid violation of position travel
limits.

302 302 Axis Speed
Violation

Axis Speed Violation. Reduce commanded speed or
change commanded position.

303 303 Unable to Move
as Requested

Unable to Move as Requested. Change commanded position, or
change type of move to PTP, or
change move speed.

304 304 Interference
Zone Violation

Interference Zone Violation. Change commanded position to be
compliant with defined interference
zones.

305 305 Soft Travel
Position Limit
Violation

Soft Travel Position Limit Violation. Move axis out of limit and restart.

306 306 Frame Shift
Parameter
Error

Frame Shift Parameter Error. Enter valid parameters and call
instruction again.

307 307 Unexpected
internal error

Unexpected error. Consult log file or contact customer
support for more information.

308 308 Hardware
following error

Hardware following error. Excessive
following error reported from servo
drives.

Reduce speed and/or payload.

309 309 Servo Defined
Position Limit
reached

Servo Defined Position Limit
reached. Servos reporting position
overtravel.

Release all limits or brakes and move
axis away from limit.

311 311 Unknown servo
error

Unknown servo error. Error code
generated by servos does not exist.

Record alarm code on servos and
contact customer support.

312 312 Axis
Acceleration
Violation

Axis Acceleration Violation. Lower acceleration or deceleration
values for offending motion.

313 313 Internal
Exception Error

Internal Exception Error. Restart system and contact customer
support if error persists.

314 314 Servo Update
Rate Error

Servos not being updated at desired
rate.

Restart system and contact customer
support if error persists.

315 315 Conveyor
Tracking
feature not
enabled

Conveyor Tracking feature not
enabled.

Contact customer support to enable
conveyor tracking feature.

MLx
Error #

OEM
Error #

Message Description Remedy
C-3

168542-1CD

192 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
316 316 External
Exception Error

External Exception Error. Restart system and contact customer
support if error persists.

317 317 Servo torque
limit reached

Servo torque limit reached. Lower acceleration and/or speed
values and reset system.

319 319 Axis and TCP
positions do not
match in target
position

Axis and TCP positions do not match
in target position. Check active tool
or reteach point.

Reteach point.

320 320 Invalid
Interference
Zone Number

Invalid Interference Zone Number. Enter valid Interference Zone
Number.

321 321 Invalid
Interference
Zone Type

Invalid Interference Zone Type. Enter valid Interference Zone Type.

322 322 Limits Setting
Error

Soft Limits cannot be defined larger
than Hard Limits.

Enter Soft limits that are smaller than
Hard Limits.

323 323 Initialization of
Motion Status
tracking failed

Initialization of Motion Status tracking
failed.

Restart system and contact customer
support if error persists.

324 324 Error Planning
Motion

Error Planning Motion. Maximum
number of motions are currently
queued.

Allow some motions to complete
before adding more to queue.

500 500 System
Monitoring
Fault

See remedy details for a specific
monitoring fault

501 501 System
Monitoring
Fault

Excessive TCP speed detected while
Jogging. Consult Log file for more
information.

Reduce jogging speed.

502 502 System
Monitoring
Fault

Actual robot position violated servo
overtravel limits. Consult Log file for
more information.

In Manual (Teach) Mode, jog the axis
back so that it is within limits.

503 503 System
Monitoring
Fault

Actual robot axis speed violated axis
maximum speed.

Change commanded position and/or
speed.

504 504 System
Monitoring
Fault

Hardware E-stop. The hardware e-
stop has been pressed.

Release E-stop and reset system.

505 505 System
Monitoring
Fault

Mode switch detected. Press reset to
reinitialize system.

Reset system.

506 506 System
Monitoring
Fault

Timeout waiting for drives to enable. Restart system and contact customer
support if error persists.

507 507 System
Monitoring
Fault

Break detected in guard circuit. Check guard circuit status and reset
system.

508 508 System
Monitoring
Fault

A discrepancy with last enabled
position was detected. Please verify
hardware position before resetting.

Verify Home Position or recalibrate
home position.

509 509 System
Monitoring
Fault

Excessive TCP speed detected
during programmed motion. Consult
Log file for more information.

Change commanded position,
change move type, or reduce speed.
Contact support.

MLx
Error #

OEM
Error #

Message Description Remedy
C-4

168542-1CD

193 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
510 510 System
Monitoring
Fault

Brake release not allowed. Cannot
enter brake release mode while in
Running state.

Change system state before
releasing brakes.

511 511 System
Monitoring
Fault

Interference zone violation detected. Change commanded position to be
away from interference zone.
Contact support.

512 512 System
Monitoring
Fault

Excessive position increment in
subsequent servo commands. Cycle
power and restart system.

Restart system and contact customer
support if error persists.

513 513 System
Monitoring
Fault

WatchDog timer failure. Cycle power
and restart system.

Restart system and contact customer
support if error persists.

514 514 System
Monitoring
Fault

Fatal Servo Fault detected. Cycle
power and restart system.

Restart system and contact customer
support if error persists.

515 515 System
Monitoring
Fault

Actual robot TCP speed violated
maximum allowed TCP speed.

Change commanded position and/or
speed.

516 516 System
Monitoring
Fault

Actual axis torque violated soft
torque limits. Consult Log file for
more information.

Remove potential obstacles from
workspace. Lower acceleration or
load if needed.

517 517 System
Monitoring
Fault

One or more drives reported
Hardware Base Block status.
Hardware Base Block status
unexpected in current system state.

Check safety and E-Stop circuits and
remove conditions causing drives to
be in Hardware Base Block.

518 518 System
Monitoring
Fault

Mismatch detected between
commanded and actual axis
positions. Position mismatch
unexpected in current system state.

Check safety and E-Stop circuits,
review log files.

519 519 System
Monitoring
Fault

Non-zero commanded velocity
detected by Monitor. Non-zero
commanded velocity unexpected in
current system state.

Consult log files for more information.

520 520 System
Monitoring
Fault

One or more drives in disabled state
detected by Monitor. All drives are
expected to be enabled in current
system state.

Check safety and E-Stop circuits to
determine why some drives are
disabled.

521 521 System
Monitoring
Fault

One or more drives in enabled state
detected by Monitor. All drives are
expected to be disabled in current
system state.

Verify software configuration and
consult log files. Contact customer
support if problem persists.

522 522 System
Monitoring
Fault

Unhandled Deadman Switch
disengage in Teach Mode detected
by Monitor. Deadman Switch
disengage in Teach Mode did not
result in a timely transition to error
states.

Verify software configuration and
consult log files. Contact customer
support if problem persists.

523 523 System
Monitoring
Fault

Unhandled Guard circuit signal loss
detected by Monitor. Guard signal
loss did not result in a timely
transition to error states.

Verify software configuration and
consult log files. Contact customer
support if problem persists.

524 524 System
Monitoring
Fault

Unhandled E-Stop detected by
Monitor. E-Stop signal did not result
in a timely transition to error states.

Verify software configuration and
consult log files. Contact customer
support if problem persists.

MLx
Error #

OEM
Error #

Message Description Remedy
C-5

168542-1CD

194 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
525 525 System
Monitoring
Fault

Actual Position movement detected
by Monitor. Actual servo position is
expected to remain constant in the
current state.

Verify software configuration and
consult log files. Contact customer
support if problem persists.

526 526 System
Monitoring
Fault

Stopping time violation detected by
Monitor. The robot did not come to a
controlled stop within the configured
stopping time.

Verify configured maximum
deceleration values against
configured stopping time for the robot
and adjust either parameter
accordingly.

527 527 System
Monitoring
Fault

Actual robot position violated servo
overtravel limits. Consult Log file for
more information.

Jog the axis back within limits.

528 528 Collision
Detected

A collision has been detected on at
least one axis.

Remove obstacles from workspace.
Lower acceleration or load if needed.

600 3744 Servo
Communication
Error

Command-Option IF Servo Unit
Initial Error. The initial sequence
between the EtherCAT (CoE)
Network Module and the
SERVOPACK was not completed
within 10s.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

601 3745 Servo
Communication
Error

Command-Option IF Memory Check
Error. The communication memory of
the EtherCAT (CoE) Network Module
and the SERVOPACK is broken.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

602 3746 Servo
Communication
Error

Command-Option IF Servo
Synchronization Error. The data
exchange between the EtherCAT
(CoE) Network Module and the
SERVOPACK was not synchronized.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

603 3747 Servo
Communication
Error

Command-Option IF Servo Data
Error. The communication data
between the EtherCAT (CoE)
Network Module and the
SERVOPACK was inappropriate.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

604 2576 Servo
Communication
Error

EtherCAT DC Synchronization Error.
The Sync0 event and the
SERVOPACK cannot be
synchronized.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

605 2577 Servo
Communication
Error

EtherCAT State Error. The EtherCAT
AL state became not Operational
while the DS402 drive state is in
Operation enabled.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

606 2578 Servo
Communication
Error

EtherCAT Outputs Data
Synchronization Error.”The events,
receive process data and sync0, do
not synchronize. (Failed to receive
the process data.)”

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

607 2592 Servo
Communication
Error

Parameter Setting Error. The
parameter setting is out of range.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-6

168542-1CD

195 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
608 2624 Servo
Communication
Error

System Initialization Error. The
initialization at power on sequence
was failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

609 2625 Servo
Communication
Error

Communication Device Initialization
Error. The ESC initialization was
failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

610 2631 Servo
Communication
Error

Loading Servo Information Error. The
loading of SERVOPACK information
was failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

611 2632 Servo
Communication
Error

EEPROM Parameter Data Error. The
checksum in EEPROM is broken.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

700 32 Servo Drive
Fault

Parameter Checksum Error. The
data of the parameter in the
SERVOPACK is incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

701 33 Servo Drive
Fault

Parameter Format Error. The data
format of the parameter in the
SERVOPACK is incorrect

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

702 34 Servo Drive
Fault

System Checksum Error. The data of
the parameter in the SERVOPACK is
incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

703 48 Servo Drive
Fault

Main Circuit Detector Error. Detection
data for power circuit is incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

704 64 Servo Drive
Fault

Parameter Setting Error. The
parameter setting is outside the
allowable setting range.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

705 65 Servo Drive
Fault

Encoder Output Pulse Setting Error.
The encoder output pulse setting
(pulse unit) (Pn212) is outside the
allowable setting range or does not
satisfy the setting conditions.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

706 66 Servo Drive
Fault

Parameter Combination Error.
Combination of some parameters
exceeds the setting range.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-7

168542-1CD

196 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
707 68 Servo Drive
Fault

Fully-closed Loop Control Parameter
Setting Error. “The settings of the
fully-closed option module and
Pn00B.3, Pn002.3 do not match. “

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

708 74 Servo Drive
Fault

Parameter Setting Error 2. There is
an error in settings of parameters
reserved by the system.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

709 80 Servo Drive
Fault

Combination Error. The
SERVOPACK and the servomotor
capacities do not match each other.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

710 81 Servo Drive
Fault

Unsupported Device Alarm. The
unsupported device unit was
connected.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

711 176 Servo Drive
Fault

Canceled Servo ON Command
Alarm. The host Control Module
reference was sent to turn the Servo
ON after the Servo ON function was
used with the utility function.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

712 256 Servo Drive
Fault

Overcurrent or Heat Sink
Overheated. An overcurrent flowed
through the IGBT. Heat sink of the
SERVOPACK was overheated.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

713 768 Servo Drive
Fault

Regeneration Error. Regenerative
circuit or regenerative resistor is
faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

714 800 Servo Drive
Fault

Regenerative Overload.
Regenerative energy exceeds
regenerative resistor capacity.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

715 816 Servo Drive
Fault

Main Circuit Power Supply Wiring
Error. Setting of AC input/DC input is
incorrect. Power supply wiring is
incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

716 1024 Servo Drive
Fault

Overvoltage. Main circuit DC voltage
is excessively high.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

717 1040 Servo Drive
Fault

Undervoltage. Main circuit DC
voltage is excessively low.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-8

168542-1CD

197 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
718 1104 Servo Drive
Fault

Main-Circuit Capacitor Overvoltage.
The capacitor of the main circuit has
deteriorated or is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

719 1296 Servo Drive
Fault

Overspeed. The servomotor speed is
over the maximum allowable speed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

720 1297 Servo Drive
Fault

Overspeed of Encoder Output Pulse
Rate. The set value of the encoder
output pulse (Pn212) exceeds the
speed limit.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

721 1312 Servo Drive
Fault

Vibration Alarm. Vibration at the
motor speed was detected.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

722 1313 Servo Drive
Fault

Autotuning Alarm. Vibration was
detected while performing tuning-
less function.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

723 1808 Servo Drive
Fault

Overload: High Load. The motor was
operating for several seconds to
several tens of seconds under a
torque largely exceeding ratings.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

724 1824 Servo Drive
Fault

Overload: Low Load. The motor was
operating continuously under a
torque largely exceeding ratings.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

725 1840 Servo Drive
Fault

Dynamic Brake Overload. “When the
dynamic brake was applied,
rotational energy exceeded the
capacity of dynamic brake resistor. “

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

726 1841 Servo Drive
Fault

Dynamic Brake Overload. “When the
dynamic brake was applied,
rotational energy exceeded the
capacity of dynamic brake resistor. “

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

727 1856 Servo Drive
Fault

Overload of Surge Current Limit
Resistor. The main circuit power was
frequently turned ON and OFF.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

728 1952 Servo Drive
Fault

Heat Sink Overheated. The
temperature of the SERVOPACK
heat sink exceeded 100 deg C.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-9

168542-1CD

198 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
729 1963 Servo Drive
Fault

Built-in Fan in SERVOPACK
Stopped. The fan inside the
SERVOPACK stopped.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

730 2064 Servo Drive
Fault

Encoder Backup Error. All the power
supplies for the absolute encoder
have failed and position data was
cleared.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

731 2080 Servo Drive
Fault

Encoder Checksum Error. The
checksum results of encoder
memory is incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

732 2096 Servo Drive
Fault

Absolute Encoder Battery Error. The
battery voltage is lower than the
specified value after the control
power supply is turned ON.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

733 2112 Servo Drive
Fault

Encoder Data Error. Data in the
encoder is incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

734 2128 Servo Drive
Fault

Encoder Overspeed. The encoder
was rotating at high speed when the
power was turned ON.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

735 2144 Servo Drive
Fault

Encoder Overheated. The internal
temperature of encoder is too high.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

736 2208 Servo Drive
Fault

External Encoder Error. External
encoder is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

737 2209 Servo Drive
Fault

External Encoder Error of Module.
Serial converter unit is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

738 2210 Servo Drive
Fault

External Encoder Error of Sensor
(Incremental). External encoder is
faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

739 2211 Servo Drive
Fault

External Encoder Error of Position
(Absolute). The external encoder
position data is incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-10

168542-1CD

199 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
740 2213 Servo Drive
Fault

Encoder Overspeed. The overspeed
from the external encoder occurred.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

741 2214 Servo Drive
Fault

Encoder Overheated. The overheat
from the external encoder occurred.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

742 2865 Servo Drive
Fault

Current Detection Error1 (Phase-U).
The current detection circuit for
phase-U is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

743 2866 Servo Drive
Fault

Current Detection Error 2 (Phase-V).
The current detection circuit for
phase-V is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

744 2867 Servo Drive
Fault

Current Detection Error 3 (Current
detector). The detection circuit for the
current is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

745 3056 Servo Drive
Fault

System Alarm 0. “Internal program
error 0" “occurred in the
SERVOPACK. “

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

746 3057 Servo Drive
Fault

System Alarm 1. “Internal program
error 1“ “occurred in the
SERVOPACK."

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

747 3058 Servo Drive
Fault

System Alarm 2. “Internal program
error 2“ “occurred in the
SERVOPACK."

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

748 3059 Servo Drive
Fault

System Alarm 3. “Internal program
error 3“ “occurred in the
SERVOPACK.”

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

749 3060 Servo Drive
Fault

System Alarm 4. “Internal program
error 4“ “occurred in the
SERVOPACK.”

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

750 3088 Servo Drive
Fault

Servo Overrun Detected. The
servomotor ran out of control.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-11

168542-1CD

200 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
751 3200 Servo Drive
Fault

Absolute Encoder Clear Error and
Multi-turn Limit Setting Error. The
multi-turn for the absolute encoder
was not properly cleared or set.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

752 3216 Servo Drive
Fault

Encoder Communications Error.
Communications between the
SERVOPACK and the encoder is not
possible.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

753 3217 Servo Drive
Fault

Encoder Communications Position
Data Error. An encoder position data
calculation error occurred.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

754 3218 Servo Drive
Fault

Encoder Communications Timer
Error. An error occurs in the
communications timer between the
encoder and the SERVOPACK.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

755 3232 Servo Drive
Fault

Encoder Parameter Error. Encoder
parameters are faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

756 3248 Servo Drive
Fault

Encoder Echoback Error. >Contents
of communications with encoder is
incorrect.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

757 3264 Servo Drive
Fault

Multi-turn Limit Disagreement.
Different multi-turn limits have been
set in the encoder and the
SERVOPACK.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

758 3313 Servo Drive
Fault

Feedback Option Module
Communications Error (Reception
error). Reception from the feedback
option module is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

759 3314 Servo Drive
Fault

Feedback Option Module
Communications Error (Timer stop).
Timer for communications with the
feedback option module is faulty.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

760 3328 Servo Drive
Fault

Position Error Pulse Overflow.
Position error pulses exceeded the
value set for parameter (Pn520)
(Excessive Position Error Alarm
Level).

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

761 3329 Servo Drive
Fault

Position Error Pulse Overflow Alarm
at Servo ON. Position error pulses
accumulated too much.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-12

168542-1CD

201 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
762 3330 Servo Drive
Fault

Position Error Pulse Overflow Alarm
by Speed Limit at Servo ON. After a
position error pulse has been input,
Pn529 limits the speed if the servo
ON command is received. If Pn529
limits the speed in such a state, this
alarm occurs when the position
references are input and the number
of position error pulses exceeds the
value set for parameter Pn520
(Excessive Position Error Alarm
Level).

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

763 3344 Servo Drive
Fault

Motor-load Position Error Pulse
Overflow. Position error between
motor and load is excessive when
fully-closed position control is used.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

764 3584 Servo Drive
Fault

Command Option Module IF
Initialization Timeout Error.
Communications initialization failed
between the SERVOPACK and the
command option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

765 3586 Servo Drive
Fault

Command Option Module IF
Synchronization Error 1. A
synchronization error occurred
between the SERVOPACK and the
command option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

766 3587 Servo Drive
Fault

Command Option Module IF
Communications Data Error. An error
occurred in the data of
communications between the
SERVOPACK and the command
option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

767 3648 Servo Drive
Fault

Command Option Module IF
Communications Setting Error. An
error occurred in establishing
communications (settings) between
the SERVOPACK and the command
option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

768 3664 Servo Drive
Fault

Command Option Module IF
Synchronization Error 2. A error
occurred in synchronization between
the SERVOPACK and the command
option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

769 3665 Servo Drive
Fault

Command Option Module IF
Synchronization Establishment Error.
A error occurred in establishing
communications between the
SERVOPACK and the command
option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

780 3680 Servo Drive
Fault

Command Option Module IF Data
Communications Error. A error
occurred in communications between
the SERVOPACK and the command
option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

MLx
Error #

OEM
Error #

Message Description Remedy
C-13

168542-1CD

202 of 206

Appendix C
C.1 MLX200 Control Module Error Code List

168542-1CD

MLX200 Software and
Operations
781 3681 Servo Drive
Fault

Command Option Module IF
Synchronization Error 3. There was a
change in timing of synchronization
between the SERVOPACK and the
command option module.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

782 3696 Servo Drive
Fault

Command Option Module Detection
Failure. Detection of the command
option module failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

783 3697 Servo Drive
Fault

Safety Option Module Detection
Failure. Detection of the safety option
module failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

784 3698 Servo Drive
Fault

Feedback Option Module Detection
Failure. Detection of the feedback
option module failed.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

785 3699 Servo Drive
Fault

Unsupported Command Option
Module. An unsupported command
option module was connected.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

786 3700 Servo Drive
Fault

Unsupported Safety Option Module.
An unsupported safety option module
was connected.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

787 3701 Servo Drive
Fault

Unsupported Feedback Option
Module. An unsupported feedback
option module was connected.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

788 3712 Servo Drive
Fault

Command Option Module
Unmatched Error. The command
option module was replaced with a
different model.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

789 2352 Servo Drive
Warning

Absolute Encoder Battery Error. This
warning occurs when the absolute
encoder battery voltage is lowered.

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

790 2417 Servo Drive
Warning

Undervoltage. “This warning occurs
before Undervoltage (410h) alarm
occurs. If the warning is ignored and
operation continues, an under
voltage alarm may occur.”

“See Chapter 9 of Sigma-V Series,
AC Servo Drives, USER'S MANUAL.
Model: SGDV-OCA01A EtherCAT
(CoE) Network Module. MANUAL
NO. SIEP C720829 04A”

800 800 EtherCAT
Software Error

Error details. Consult MLxServo.log and
MLxServoError.log for more
information.

MLx
Error #

OEM
Error #

Message Description Remedy
C-14

168542-1CD

203 of 206

168542-1CD

MLX200 Software and
Operations

Appendix C
C.1 MLX200 Control Module Error Code List
801 801 Servo Drive
Fault

Hardware Fault occurred in the
SanMotionR Servo Drive.

See Chapter 11, section 3 of
SanMotionR Advanced Model
EtherCAT I/F Manual.

802 802 Servo Drive
Fault

Hardware Fault occurred in the
Servo Drive.

Refer to the Servo Drive reference
manual for list of alarm codes and
remedy information.

803 803 Digital IO Error An error occurred setting or reading
Digital IO.

Check and Verify Digital IO
configuration.

MLx
Error #

OEM
Error #

Message Description Remedy
C-15

168542-1CD

204 of 206

Appendix D
D.1 3rd Party Software Licenses Usage

D-1

168542-1CD

168542-1CD

MLX200 Software and
Operations

Appendix D

D.1 3rd Party Software Licenses Usage

SOFTWARE DISTRIBUTION LICENSE FOR THE
ETHERNET/IP(TM) COMMUNICATION STACK

(ADAPTED BSD STYLE LICENSE)

Copyright (c) 2009, Rockwell Automation, Inc. ALL RIGHTS RESERVED.
EtherNet/IP is a trademark of ODVA, Inc.

Redistribution of the Communications Stack Software for EtherNet/IP and use
in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright and trademark
notices, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of Rockwell Automation, ODVA, nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission from the respective owners.

The Communications Stack Software for EtherNet/IP, or any portion thereof,
with or without modifications, may be incorporated into products for sale.
However, the software does not, by itself, convey any right to make, have
made, use, import, offer to sell, sell, lease, market, or otherwise distribute or
dispose of any products that implement this software, which products might be
covered by valid patents or copyrights of ODVA, Inc., its members or other
licensors nor does this software result in any license to use the EtherNet/IP
mark owned by ODVA. To make, have made, use, import, offer to sell, sell,
lease, market, or otherwise distribute or dispose of any products that
implement this software, and to use the EtherNet/IP mark, one must obtain the
necessary license from ODVA through its Terms of Usage Agreement for the
EtherNet/IP technology, available through the ODVA web site at
www.odva.org. This license requirement applies equally (a) to devices that
completely implement ODVA's Final Specification for EtherNet/IP (?Network
Devices?), (b) to components of such Network Devices to the extent they
implement portions of the Final Specification for EtherNet/IP, and (c) to
enabling technology products, such as any other EtherNet/IP or other network
protocol stack designed for use in Network Devices to the extent they
implement portions of the Final Specification for EtherNet/IP. Persons or
entities who are not already licensed for the EtherNet/IP technology must
contact ODVA for a Terms of Usage Agreement.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE

205 of 206

MLX200
SOFTWARE AND OPERATION
USERS MANUAL
HEAD OFFICE
2-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu 806-0004, Japan
Phone +81-93-645-7703 Fax +81-93-645-7802

100 Automation Way, Miamisburg, OH 45342, U.S.A.
Phone +1-937-847-6200 Fax +1-937-847-6277

YASKAWA America Inc. (Motoman Robotics Division)

Bredbandet 1 vån. 3 varvsholmen 392 30 Kalmar, Sweden
Phone +46-480-417-800 Fax +46-480-417-999

YASKAWA Nordic AB

Yaskawastrasse 1, 85391 Allershausen, Germany
Phone +49-8166-90-100 Fax +49-8166-90-103

YASKAWA Europe GmbH Robotics Divsion)

9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul 150-737, Korea
Phone +82-2-784-7844 Fax +82-2-784-8495

YASKAWA Electric Korea Co., Ltd

151 Lorong Chuan, #04-02A, New Tech Park, Singapore 556741
Phone +65-6282-3003 Fax +65-6289-3003

YASKAWA Electric (Singapore) PTE Ltd.

No7 Yongchang North Road, Beijing E&T Development Area China 100176
Phone +86-10-6788-2858 Fax +86-10-6788-2878

YASKAWA SHOUGANG ROBOT Co. Ltd.

#426, Udyog Vihar, Phase- IV, Gurgaon, Haryana, India
Fax +91-124-475-8542Phone +91-124-475-8500

YASKAWA India Private Ltd. (Robotics Division)

YASKAWA Electric (China) Co., Ltd.
22/F One Corporate Avenue No.222, Hubin Road, Huangpu District, Shanghai 200021, China
Phone +86-21-5385-2200 Fax 86-21-5385-3299

YASKAWA Electric (Thailand) Co., Ltd.
252/125-126 27th Floor, Tower B Muang Thai-Phatra Complex Building,
Rachadaphisek Road Huaykwang, Bangkok 10320, Thailand
Phone +66-2693-2200 Fax +66-2693-4200

12F, No.207, Sec. 3, Beishin Rd., Shindian District, New Taipei City 23143, Taiwan
Fax +886-2-8913-1513Phone +886-2-8913-1333

YASKAWA Electric Taiwan Corporation

Secure Building-Gedung B Lantai Dasar & Lantai 1 JI. Raya Protokol Halim Perdanakusuma,
Jakarta 13610, Indonesia

Fax +62-21-2982-6741Phone +62-21-2982-6470

PT. YASKAWA Electric Indonesia
5168542-1CD
MANUAL NO.

Specifications are subject to change without notice
for ongoing product modifications and improvements.

206 of 206

	1 Introduction
	1.1 Requirements
	1.1.1 Rockwell Automation PAC/PLC requirements for the MLX200:
	1.1.2 RSLogix 5000 files included with the MLX200 Control Module:

	1.2 System Layout for the MLX200 Control Module
	1.3 Customer Support Information

	2 System Configuration
	2.1 MLX200 Control Module
	2.2 Configuring RSLogix Project
	2.2.1 Pre-Configured RSLogix Projects
	2.2.1.1 Configuring the Logix Controller
	2.2.1.2 Configuring an MLX200 Control Module Communication

	2.2.2 Importing MLX200 into Existing Project
	2.2.2.1 Import MLX200 AOIS AND UDTS
	2.2.2.2 Creating the MLX200 Communications Task
	2.2.2.3 Adding an MLX200 Control Module to the I/O Configuration

	3 Developing with MLX200
	3.1 MLX200 Tag Structures
	3.1.1 MLx-Level Tag Structure
	3.1.2 Robot-Level Tag Structure
	3.1.3 Axis-level Tag Structure
	3.1.4 Application Data Tag Structure

	3.2 Instruction Overview
	3.2.1 System Commands
	3.2.2 Robot Commands

	3.3 Programming Introduction
	3.3.1 Task Scheduling
	3.3.2 Instruction Execution and Status Bits
	3.3.3 State Management and Configuration Instructions
	3.3.4 Motion Instructions
	3.3.4.1 Speed, Acceleration, Jerk Parameters
	3.3.4.2 Trajectory Shape
	3.3.4.3 Blend Factor

	3.3.5 Coordinate Frames Relevant to Robotics
	3.3.6 Jogging Motions
	3.3.7 Error Messages
	3.3.8 Stopping and Recovering Robot Motion
	3.3.8.1 Aborted Motions
	3.3.8.2 Stopped Motions

	3.3.9 Using Global Speed Scale

	3.4 MLX-HMI
	3.4.1 Setting Up the HMI
	3.4.1.1 Importing the MLx-HMI Task
	3.4.1.2 Importing MLxApplicationData
	3.4.1.3 Running the FTVIEW HMI Application

	3.4.2 Main Screen
	3.4.3 HMI Menu Selection
	3.4.4 Login and Security Settings
	3.4.5 Alarm Screen
	3.4.6 Teach Screen
	3.4.7 Tool and User Frame Screens
	3.4.8 Cubic Interference Zones
	3.4.9 Robot Configuration
	3.4.10 Robot Info
	3.4.11 Brake Release Screen
	3.4.12 Interference Zone Status Screen
	3.4.13 Information Screen

	4 MLX200 Programming Guide
	4.1 Developing a Simple Application
	4.1.1 Teaching Points with MLX-MHI
	4.1.2 Accessing Taught Points From a Program
	4.1.3 OPERATING A USER APPLICATION FROM HMI
	4.1.4 Teaching Points in User Frames
	4.1.5 USING REFERENCE POSITION VALUES
	4.1.5.1 Example 1: 6-Axis Robot
	4.1.5.2 Example 2: 4-Axis Palletizing Robot
	4.1.5.3 Summary

	4.2 Configuration Instructions
	4.2.1 Using Configuration Instructions
	4.2.2 Setting Multiple Configuration Instructions
	4.2.3 Using Configuration Instructions with Motions

	4.3 Using Blend Factors
	4.3.1 PC Bit Triggering
	4.3.2 Sequential Motion Instructions

	4.4 Programming Pitfalls and Best Practices
	4.4.1 Incomplete AOI Executions
	4.4.2 DN BIT Checking
	4.4.3 Reused Control Variables
	4.4.4 Task Overlaps and CPU Load

	5 Collision Detection
	5.1 Collision Detection Overview
	5.2 Configuring Collision Detection from the HMI
	5.3 Using the MLxRobotCollisionDetection Instruction
	5.3.1 Initializing Collision Detection from Application
	5.3.2 Measuring Collision Detection from Application
	5.3.3 Changing Collision Detection Behavior during Application

	6 Conveyor Tracking
	6.1 Conveyor Tracking Overview
	6.2 Conveyor Tracking Requirements
	6.3 Configuring Conveyor Tracking
	6.4 1756-HSC Counter Card Configuration
	6.4.1 Wiring the 1756-HSC
	6.4.2 Configuring the 1756-HSC in RSLOGIX
	6.4.3 Linking the Conveyor Tags for a 1756-HSC

	6.5 Conveyor Parameter Configuration for MLX200
	6.6 Conveyor Tracking Setup Procedure
	6.6.1 Verify Counter Card is Functional
	6.6.2 Calculate Conveyor Resolution
	6.6.3 Teach a User Frame
	6.6.4 Teach Point and Setup Tracking Parameters
	Conveyor Teach Position Value
	Sync Start Position Value
	Max Start Position Value
	# of Points to Average/Linear Fit for Conveyor Position
	Conveyor Position
	Lag Offset

	6.6.5 Debugging Pickup Position Errors
	6.6.5.1 Part is Gripped at Different Locations on Part
	6.6.5.2 Part is Gripped Consistently at the Wrong Location on the Part
	Part is Gripped Consistently at the Wrong Location on the Part

	6.7 Developing a Conveyor Tracking Application
	6.7.1 Conveyor Tracking Instructions
	MLxRobotConvSyncStart
	MLxRobotConvSyncStop
	MLxRobotConvSyncStopWithLinearMot
	MLxRobotConvSyncStopWithAxisMot
	6.7.1.1 MLxRobotConvSyncStart Instruction
	MLxRobotConvSyncStart
	ConveyorStartPosition
	ConveyorTeachPos
	UserFrameNumber
	.Sts_DN
	.Sts_OL

	6.7.1.2 MLxRobotConvSyncStop Instruction
	6.7.1.3 MLxRobotConvSyncStopWithLinearMot Instruction
	6.7.1.4 MLxRobotConvSyncStopWithAxisMot Instruction

	6.7.2 Programming Structure for a Conveyor Tracking Application in Ladder
	6.7.2.1 Program Structure Overview
	6.7.2.2 Program Structure Details
	6.7.2.3 Advanced Application Options
	Pattern-based Distribution
	Dynamic Load-balancing

	6.7.2.4 Conveyor Tracking Programming Pitfalls
	DELAY AFTER CHECKING MAXSTARTPOSITION
	STS_OL USAGE

	7 Configuration and Maintenance of MLX200 Control Module
	7.1 MLX200 Control Module Status Display
	7.1.1 Connecting to MLX200 Control Module Display Remotely

	7.2 Maintenance and Configuration Operations
	7.2.1 Logging in to Perform Maintenance Operations
	7.2.2 Changing the Password of the MLX200 Control Module
	7.2.3 Changing the IP Address of the MLX200 Control Module
	7.2.4 Rebooting the MLX200 Control Module
	7.2.5 Retrieving Log Files
	7.2.6 Updating Configuration and License Files
	7.2.7 BACKUP AND RESTORE OPERATIONS
	7.2.8 Performing Firmware Update
	7.2.9 Advanced Operations to Assist with Maintenance and Troubleshooting
	7.2.9.1 Disabling Automatic Restart of MLX-R.exe
	7.2.9.2 Manually Starting MLX-R.exe After Auto-start is Disabled

	Appendix A
	A.1 MLX200 Add-on Instructions
	A.1.1 MLxAbort
	A.1.2 MLxEnable
	A.1.3 MLxHold
	A.1.4 MLxReset
	A.1.5 MLxResetAndHold
	A.1.6 MLxRestart
	A.1.7 MLxStop
	A.1.8 MLxRobotMoveAxisAbsolute
	A.1.9 MLxRobotMoveAxisRelative
	A.1.10 MLxRobotMoveLinearAbsolute
	A.1.11 MLxRobotMoveLinearRelative
	A.1.12 MLxRobotMoveCircular
	A.1.13 MLxRobotJogAxes
	A.1.14 MLxRobotJogAxesToPoint
	A.1.15 MLXRobotJogTCP
	A.1.16 MLxRobotJogTCPToPoint
	A.1.17 MLxRobotCoordinateTransform
	A.1.18 MLxRobotSetBasePose
	A.1.19 MLxRobotSetCubicIZByCenterPoint
	A.1.20 MLxRobotSetCubicIZByTwoCorners
	A.1.21 MLxRobotSetFrameShift
	A.1.22 MLxRobotSetToolProperties
	A.1.23 MLxRobotSetUserFrame
	A.1.24 MLxRobotCollisionDetection
	A.1.25 MLxRobotConvSyncStart
	A.1.26 MLxRobotConvSyncStop
	A.1.27 MLxRobotConvSyncStopWithAxisMot
	A.1.28 MLxRobotConvSyncStopWithLinearMot
	A.1.29 MLxGetErrorDetail
	A.1.30 MLxGetModuleInfo
	A.1.31 MLxReadDigitalInputs
	A.1.32 MLxWriteDigitalOutputs
	A.1.33 MLxRobotGetHomeOffsets
	A.1.34 MLxRobotSetHomeOffsets
	A.1.35 MLxRobotGetProperties
	A.1.36 MLxRobotSetProperties
	A.1.37 MLxSetGlobalParameter

	Appendix B
	B.1 MLX200 Control Module Performance Results and Memory Usage

	Appendix C
	C.1 MLX200 Control Module Error Code List

	Appendix D
	D.1 3rd Party Software Licenses Usage

