

Linear Sigma Series Product Catalog

Advantages of Applying Linear Servo Systems

Improved Machine Performance

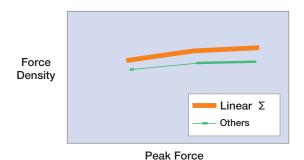
A linear motor is directly coupled to the load. This allows for high positioning accuracies and super-wide operational speed ranges compared to other conventional drive mechanisms. An unlimited linear travel envelope can be obtained by coupling the stationary magnetic ways as needed.

Simplified Machine Design and Construction

Since the moving member of the motor is rigid and directly fixed to the load, the linear motion mechanism's stiffness is greatly improved. Multiple units can be operated independently over a single axis of the magnetic way, creating a very compact drive system.

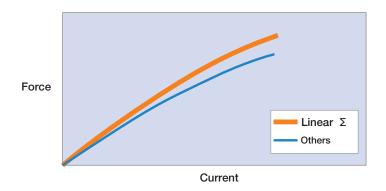
Ease of Operation and High Reliability

Linear motors are quiet, even at high speeds, because the only contacting mechanisms in the linear motor system are the linear motion guide bearings. This increases system reliability while greatly reducing maintenance requirements.


Table of Contents:

Performance	4
Construction and Features	6
Range of Products	8
Model Designation	
	•
Linear Sigma Servomotor Specifications	
200V	
Coreless GW	12
Iron-Core FW	
Iron-Core TW	
400V	
Iron-Core FW	46
Iron-Core TW	
Sigma II Servo Amplifier Specifications	
	00
SGDH	62
Options	
Serial Converter Unit (JZDP-D00 - DDD)	66
,	
Selecting Motor Force	
Comparison with Rotary Motor	70
Selection Example	
Selection Example	
Ordering Reference	
Linear Servomotor and Amplifier	
Options	
Cables and Connectors	72

Performance


Force Density

Yaskawa Linear Sigma Servomotors are designed for high force density in compact packages. This is made possible by the extensive use of high-energy rare earth magnets. Combined with the cutting edge materials are Yaskawa's motor optimization expertise and high density winding technology from the company's world famous Sigma and Sigma II rotary servomotor products.

Force Linearity

Linear Sigma Servomotors exhibit exceptional Force Linearity, even near the peak force regions. This is a result of advanced magnetic circuitry and optimum winding geometry, as well as the d-q axis current control method within the powerful Sigma II Digital Servo Amplifier.

Velocity Ripple

Linear Sigma Servomotor performance levels are further enhanced by the combined use with Sigma II Digital Servo Amplifiers. The closed loop linear servo system generates extremely smooth linear motion with minimum velocity ripple.

Speed

Linear Sigma Servomotors can reach speeds as high as 5 meters (196 inches) per second. Since they do not suffer from the usual limitations of conventional mechanical drive systems, the operational speed ranges are not constrained by factors such as travel length.

Acceleration

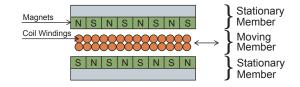
Linear Sigma Servomotors can accelerate well beyond the capability of other mechanical linear translation systems. They can achieve an astonishing 20Gs of maximum acceleration.

Settling Time

Linear Sigma Servomotors combined with Sigma II Servo Amplifiers can shorten system settling time after motion. The excellent dynamic stiffness of the motors and one of the fastest servo amplifiers in the industry can immediately improve your machine's motion cycle specifications.

Magnetic Attraction Forces

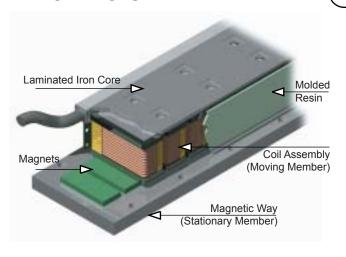
Linear Sigma GW Servomotors are coreless and there is no attraction force between the motor members. They also feature zero-cogging. Linear Sigma FW and TW Servomotors are iron-core type. Depending on the size of the motor, there are small to large attraction forces between the moving and stationary parts of the motor. These attraction forces can benefit some systems by providing preload forces to the linear motion guides, increasing the system rigidity. Inversely, the attraction forces may negatively affect the mechanical design freedom since the forces acting on the relative members of the motors must be properly supported by increased bearing load capacities. Iron-core TW Servomotors overcome this limitation with a patented design structure in which the attraction forces are negated by the motor's unique layout. These motors offer high force density and long linear bearing life in a compact package.

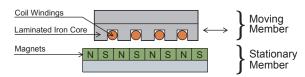

High Efficiency

Linear Sigma Servomotors are extremely energy efficient. Due to their optimized magnetic circuitry and high density windings inherited from Yaskawa's legendary Sigma Servomotors, the effects of the motors' heat being transferred to other areas of your machine are minimized.

Construction & Features

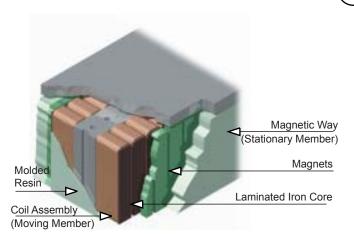
Coreless GW Magnetic Way (Stationary Member) Coil Assembly (Moving Member) Magnets

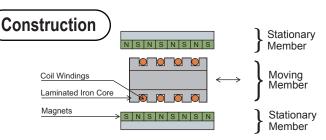

Construction


Coreless GW linear motors are composed of "Coil Assemblies" and stationary "Magnetic Ways".

- The coil assembly has no iron content and is made of accurately molded resin motor windings.
- The stationary magnetic way is made of two nickelized steel plates with accurately placed rare-earth magnets on each side. The steel plates are joined at one end to form a "U-Channel" that provides a space for the coil assemblies.

Iron-Core FW


Construction



Iron-core FW linear motors are composed of "Coil Assemblies" with laminated iron-core and single-sided stationary "Magnetic Ways".

- The coil assembly of the FW linear motor is composed of a laminated iron-core and pre-wound coil bobbins inserted into the slots located on the laminated iron core. The entire coil unit, after the precision assembly process, is permanently encapsulated in a thermally conductive resin body to give structural rigidity.
- The magnetic way of the FW is made of a row of rare-earth magnets accurately placed on one side of the nickelized steel carrier plate.
 Stainless steel magnet covers protect the magnets on the FW magnetic ways.

Iron-Core TW

Iron-core TW linear motors are composed of "Coil Assemblies" with laminated iron-core and a pair of stationary "Magnetic Ways" that are placed on each side of the moving coils.

- The coil assembly of the TW linear motor is composed of a laminated iron-core and pre-wound coil bobbins inserted into the slots located on the laminated iron-core. The entire coil unit, after the precision assembly process, is permanently encapsulated in a thermally conductive resin body to provide structural rigidity.
- The magnetic way of the TW is made of a row of rare-earth magnets accurately placed on one side of the nickelized steel carrier plate.
 Two of the magnet carrier plates are used as a pair in a fashion similar to the coreless type motors. Stainless steel magnet covers protect the magnets on the TW magnetic ways.

Features

- The coreless construction of the GW results in zero-attraction force, zero-cogging and no moment loads on linear motion bearings.
- The lack of attraction force helps to extend the life of linear motion guides, and the operational noise can be kept to a minimum.
- The velocity ripple is minimized due to a zero-cogging feature of the coreless construction.

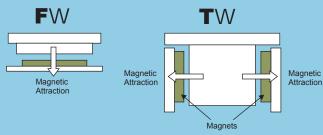
Features

- The magnetic attraction force between the moving and stationary members can be used effectively to increase the rigidity of the linear guidance system by pre-loading the linear motion bearings.
- The magnetic pre-loading on certain types of compliant linear motion bearings can help increase the system's frequency response, improving its deceleration and settling performance.
- The compact profiles of FW linear motors result in low profile linear positioning systems.

Features

- Yaskawa's unique construction principles of the TW linear motor negates the effects of magnetic attraction force between the relative motor members. This provides for the use of smaller linear bearing systems without major concerns in the linear motion bearing life.
- The linear motion bearing runs quieter due to the lack of attraction force.
- TW linear motors have very little cogging due to their optimized internal magnetic circuit design.

Linear Sigma Application Notes



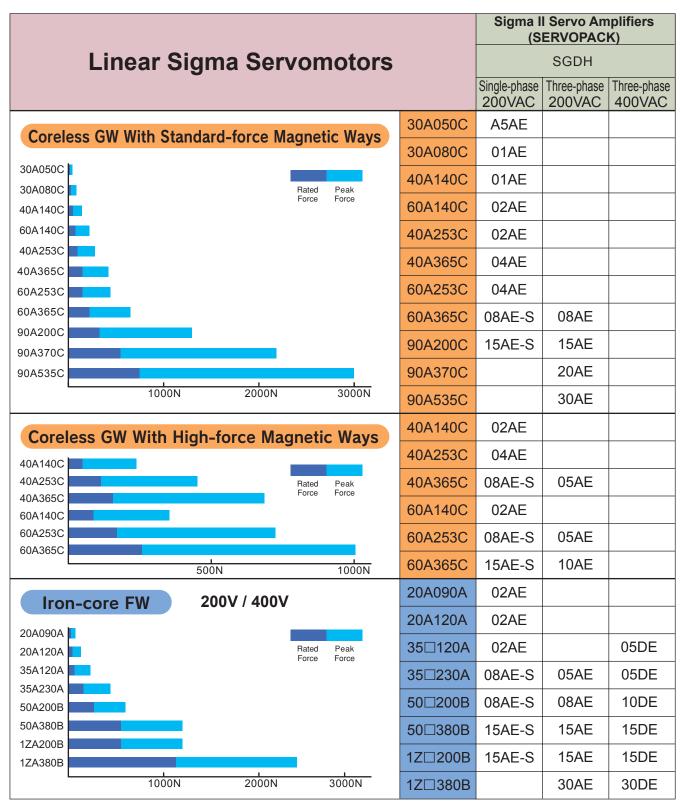
In order to obtain the maximum motor performance and to avoid the relative contacting of the motor components, the air-gap between the coil assembly and the magnetic way must be maintained according to the specified dimensional tolerances.

2

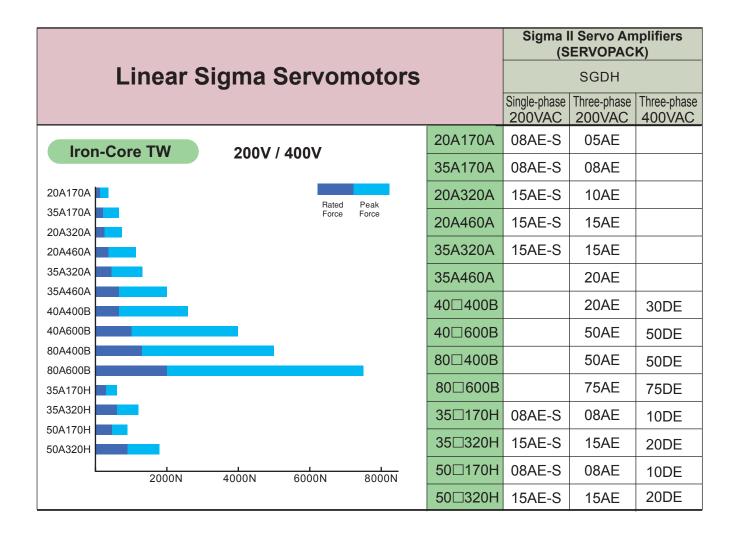
Iron-core motors typically have attraction forces that are 5 to 6 times that of their own peak forces (except for TW Motors). Therefore, it is extremely important to design rigid mechanical structure around these motors in addition to taking extra care in selecting the linear motion bearings with sufficient load capacities. Since linear motors are capable of very high terminal linear velocities, be sure to check for the maximum speed limitations on the linear motion bearings selected for the system.

- 3
- Prevent foreign materials from falling into the air gap of linear motors. Employ general cautions regarding environmental conditions.

When linear motors are intended for use in vertical load orientations, well-designed counterbalancing or mechanical braking mechanisms must be provided in order to prevent the load from free-falling when the motor is no longer energized.

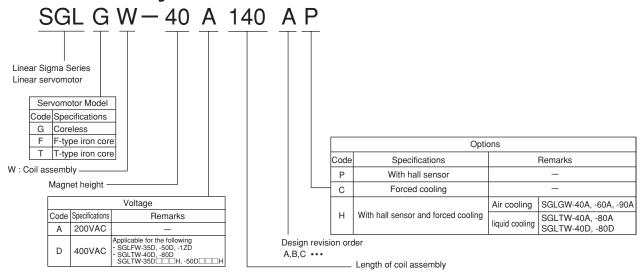


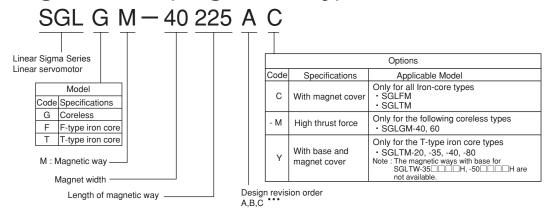
The moving motor coil and the linear encoder read head should be placed as close as practically possible in order to obtain the best system accuracy. However, the effects of the heat generated by the motor must be taken into consideration. Excessive heat transfer from the motor coil to the linear encoder read head will cause degradation of reliability as well as malfunction of the feedback system.



Linear servomotor coils generate heat. Heat management consideration is critical in linear motor based positioning system design.

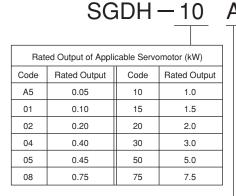
Range of Products


Note: Single-phase power supply may offer decreased speed ripple characteristics compared to a three-phase system.


Model Designation

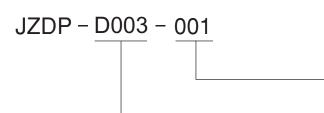
Linear Servomotor Model Designation

Coil Assembly



Magnet Track (Magnetic Way)

Ε


Servo Amplifier Model Designation

Power Supply Voltage		
Code	Voltage	
А	Single/Three-phase, 200V	
D	Three-phase, 400V	

Model (Fixed)		
Code	Remarks	
Е	For force, speed, and position control Applicable for various application modules	

Serial Converter Unit Model Designation

Serial Converter Unit Model				
Symbol	Appearance	Applicable Linear Scale	Hall Sensor	
D003		Made by Heidenhain	None	
D005		Made by Renishaw	None	
D006		Made by Heidenhain	Yes	
D008		Made by Renishaw	Yes	

	Applic	able Line	ear Servomotor		
Servomotor Model		Symbol	Servomotor Model		Symbol
	30A050C	250		20A170A	011
	30A080C	251		20A320A	012
	40A140C	252		20A460A	013
SGLGW- (Coreless)	40A253C	253		35A170A	014
When a	40A365C	254		35A320A	015
standard-	60A140C	258		35A460A	016
force magnetic	60A253C	259		35A170H	105
way is used.	60A365C	260		35A320H	106
	90A200C	264		50A170H	108
	90A370C	265		50A320H	109
	90A535C	266	SGLTW- (Iron-core)	40A400B	185
SGLGW-	40A140C	255	(IIOII-core)	40A600B	186
SGLGM-	40A253C	256		80A400B	187
(Coreless)	40A365C	257		80A600B	188
When a	60A140C	261		35D170H	193
high-force magnetic way is used.	60A253C	262		35D320H	194
	60A365C	263		50D170H	195
	20A090A	017		50D320H	196
	20A120A	018		40D400B	197
	35A120A	019		40D600B	198
	35A230A	020		80D400B	199
	50A200B	181		80D600B	200
	50A380B	182			
SGLFW- (Iron-core)	1ZA200B	183			
	1ZA380B	184			
	35D120A	211			
	35D230A	212			
	50D200B	189			
	50D380B	190			
	1ZD200B	191			
	1ZD380B	192			

Note: When using a 400V linear servomotor with a 200V SERVOPACK, the parameters in the serial converter should be changed. Contact your Yaskawa representative.

Linear Sigma Servomotor Specifications (200V)

Coreless GW SGLG□-30 (200V)

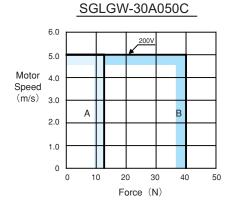
Basic Specifications

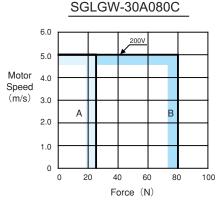
Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

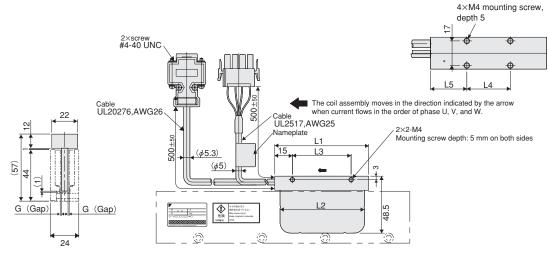
Dielectric Strength: 1500VAC for 1 min. Enclosure: Self-cooled, air-cooling


Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)


Ratings and Specifications

Linear Servomotor Type SGLGW-		30A	
Linear Servomotor Type SGLG	/V- '	050C	080C
Rated Force *	N	12.5	25
Rated Current *	Arms	0.55	0.85
Instantaneous Peak Force *	N	40	80
Instantaneous Peak Current *	Arms	1.62	2.53
Coil Assembly Mass	kg	0.10	0.15
Force Constant	N/Arms	26.4	33.9
BEMF Constant	V/(m/s)	8.8	11.3
Motor Constant	N/\sqrt{W}	3.7	5.6
Electrical Time Constant	ms	0.2	0.4
Mechanical Time Constant	ms	7.30	4.78
Thermal Resistance (with Heat Sink)		4.89	2.93
Thermal Resistance (without Heat S	ink) K/W	_	_
Magnetic Attraction	N	0	0

Force and Speed Characteristics With Standard-force Magnetic Ways


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

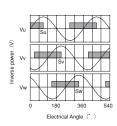
Linear Servomotor Model SGLGW-	Heat Sink Size in mm
30A050C 30A080C	200 x 300 x 12

Dimensional Drawings (Units: mm)

Coil Assembly (SGLGW-30A $\square\square\square$ C \square)

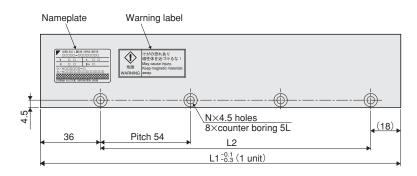
Hall Sensor Connector Specifications

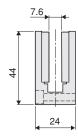
The mating connector Socket connector type: 17JE-13090-02(D8C) Stud type:17L-002C or 17L-002C1

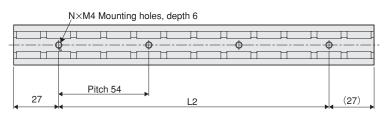

Pin No.	Name
1	+5V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Pin No.	Name
1	+5V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

	Linear Servomotor Connector Specificatio
pply)	1234
ply)	Plug type: 350779-1 Pin type: 350924-1 or 770672-1 made by Tyco Electronics A
	The mating connector
	Cap type: 350780-1 Socket type: 350925-1 or 770673-1






Coil Assembly Model SGLGW-	L1	L2	L3	L4	L5	G (Gap)	Approx. Mass* kg
30A050C□	50	48	30	20	20	0.85	0.14
30A080C□	80	72	50	30	25	0.95	0.19

^{*} The value indicates the mass of coil assembly with a hall sensor unit.

Magnetic Way (SGLGM-30 $\square\square$ A)

Magnetic Way Model SGLGM-	L1	L2	N	Approx. Mass kg
30108A	108	54	2	0.6
30216A	216	162	4	1.1
30432A	432	378	8	2.3

Coreless GW SGLG□-40 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min. Enclosure: Self-cooled, air-cooling

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

Ratings and Specifications

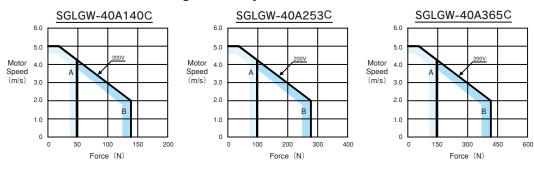
With Standard-force Magnetic Ways

Linear Servomotor Type SGLGW-		40A		
Linear Servomotor Type SGLGVV-1	140C	253C	365C	
Rated Force * N	47	93	140	
Rated Current * Arms	0.8	1.6	2.4	
Instantaneous Peak Force * N	140	280	420	
Instantaneous Peak Current * Arms	2.4	4.9	7.3	
Coil Assembly Mass kg	0.34	0.60	0.87	
Force Constant N/Arms	61.5	61.5	61.5	
BEMF Constant V/(m/s)	20.5	20.5	20.5	
Motor Constant N/\sqrt{W}	7.8	11.0	13.5	
Electrical Time Constant ms	0.4	0.4	0.4	
Mechanical Time Constant ms	5.59	4.96	4.77	
Thermal Resistance (with Heat Sink) K/W	1.87	0.98	0.65	
Thermal Resistance (without Heat Sink) K/W	3.39	2.02	1.38	
Magnetic Attraction N	0	0	0	

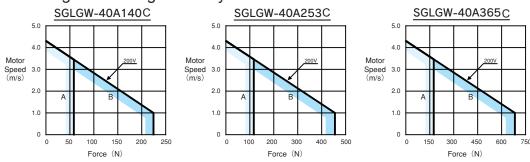
With High-force Magnetic Ways

Linear Servomotor Type SGLGW-	40A		
Linear Servomotor Type SGLGW-1!	140C	253C	365C
Rated Force * N	57	114	171
Rated Current * Arms	0.8	1.6	2.4
Instantaneous Peak Force * N	230	460	690
Instantaneous Peak Current * Arms	3.2	6.5	9.7
Coil Assembly Mass kg	0.34	0.60	0.87
Force Constant N/Arms	76.0	76.0	76.0
BEMF Constant V/(m/s)	25.3	25.3	25.3
Motor Constant N/\sqrt{W}	9.6	13.6	16.7
Electrical Time Constant ms	0.4	0.4	0.4
Mechanical Time Constant ms	3.69	3.24	3.12
Thermal Resistance (With Heat Sink) K/W	1.87	0.98	0.65
Thermal Resistance (Without Heat Sink) K/W	3.39	2.02	1.38
Magnetic Attraction N	0	0	0

Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

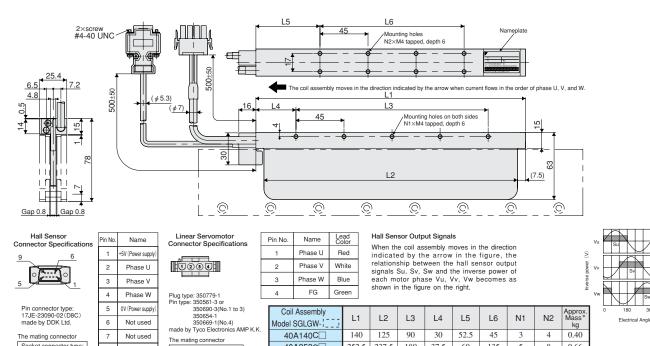

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLGW-	Heat Sink Size in mm
40A140C	200 X 300 X 12
40A253C	300 X 400 X 12
40A365C	400 X 500 X 12


Force and Speed Characteristics

With Standard-force Magnetic Ways

With High-force Magnetic Ways



Note: The voltages shown in graphs are for Sigma II SERVOPACK's AC supply input voltage. The actual output motor bus voltage will be higher than indicated.

Dimensional Drawings (Units: mm)

Coil Assembly (SGLGW-40A□□□C□)

1N=0.2276 lb=0.102kaf 1mm=0.03937 in

40A253C

40A365C

Cap type: 350780-1 Socket type: 350570-3 or 350689-3

Not used

Not used

252.5 237.5 180

350 315 37.5

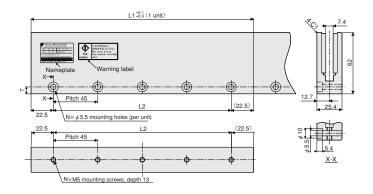
The value indicates the mass of coil assembly with a hall sensor unit.

60

52.5

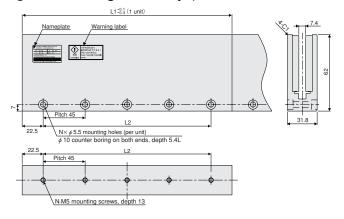
135

270


8 0.66

14

Socket connector type 17JE-13090-02(D8C)


Stud type:17L-002C or 17L-002C1

Standard Force Magnetic Way (SGLGM-40□□□CT)

Standard-force Magnetic Way Model SGLGM-[]	L1	L2	N	Approx. Mass kg
40090CT	90	45	2	0.8
40225CT	225	180	5	2.0
40360CT	360	315	8	3.1
40405CT	405	360	9	3.5
40450CT	450	405	10	3.9

High-Force Magnetic Way (SGLGM-40□□□B-M)

High-force Magnetic Way Model SGLGM-	L1	L2	N	Approx. Mass kg
40090B-M	90	45	2	1.0
40225B-M	225	180	5	2.6
40360B-M	360	315	8	4.1
40405B-M	405	360	9	4.6
40450B-M	450	405	10	5.1

Coreless GW SGLG□-60 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min. Enclosure: Self-cooled, air-cooling

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

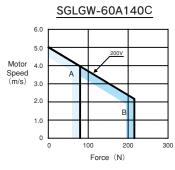
Ratings and Specifications

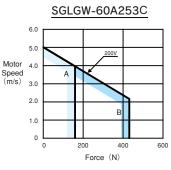
With Standard-force Magnetic Ways

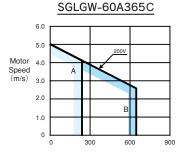
Linear Conversetor Type CCLCW	60A		
Linear Servomotor Type SGLGW-	140C	253 C	365C
Rated Force * N	70	140	210
Rated Current * Arms	1.2	2.3	3.5
Instantaneous Peak Force * N	220	440	660
Instantaneous Peak Current * Arms	3.5	7.0	10.5
Coil Assembly Mass kg	0.42	0.76	1.10
Force Constant N/Arms	66.6	66.6	66.6
BEMF Constant V/(m/s)	22.2	22.2	22.2
Motor Constant N/\sqrt{W}	11.1	15.7	19.2
Electrical Time Constant ms	0.5	0.5	0.5
Mechanical Time Constant ms	3.41	3.08	2.98
Thermal Resistance (with Heat Sink) K/W	1.62	0.80	0.53
Thermal Resistance (without Heat Sink) K/W	2.69	1.54	1.20
Magnetic Attraction N	0	0	0

With High-force Magnetic Ways

Linear Conjumptor Type CCL CW 1		60A		
Linear Servomotor Type SGLGW-	140C	253C	365C	
Rated Force * N	85	170	255	
Rated Current * Arms	1.2	2.3	3.5	
Instantaneous Peak Force * N	360	720	1080	
Instantaneous Peak Current * Arms	5.0	10.0	14.9	
Coil Assembly Mass kg	0.42	0.76	1.10	
Force Constant N/Arms	77.4	77.4	77.4	
BEMF Constant V/(m/s)	25.8	25.8	25.8	
Motor Constant N/\sqrt{W}	12.9	18.2	22.3	
Electrical Time Constant ms	0.5	0.5	0.5	
Mechanical Time Constant ms	2.52	2.29	2.21	
Thermal Resistance (With Heat Sink) K/W	1.62	0.80	0.53	
Thermal Resistance (Without Heat Sink) K/W	2.69	1.54	1.20	
Magnetic Attraction N	0	0	0	

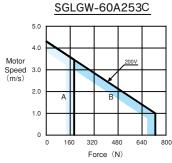

- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

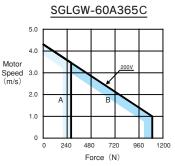

Linear Servomotor Model SGLGW-	Heat Sink Size in mm
60A140C	200 X 300 X 12
60A253C	300 X 400 X 12
60A365C	400 X 500 X 12


Force and Speed Characteristics

A : Continuous Duty Zone B : Intermittent Duty Zone

With Standard-force Magnetic Ways





With High-force Magnetic Ways

Note: The voltages shown in graphs are for Sigma II SERVOPACK's AC supply input voltage. The actual output motor bus voltage will be higher than indicated.

Dimensional Drawings (Units: mm)

Coil Assembly (SGLGW-60A□□□C□)

1N=0.2276 lb=0.102kgf 1kg=2.232 lb 1mm=0.03937 in

Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.

The mating connector Socket connector type 17JE-13090-02(D8C) Stud type:17L-002C or 17L-002C1

Pin No.	Name
1	+5V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

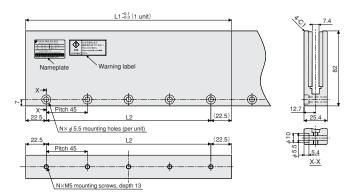
Linear Servomotor Connector Specifications 1000

350669-1 (No.4) made by Tyco Electronics AMP K.K.

The mating connector type Cap type: 350780-1 Socket type: 350570-3 or 350689-3

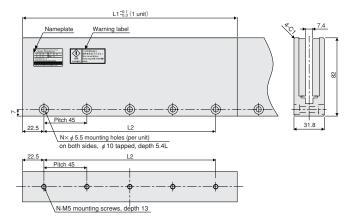
Pin No.	Name	Lead Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue

FG Green


Hall Sensor Output Signals When the coil assembly moves in the direction

when the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure on the right.

Coil Assembly Model SGLGW-i'	L1	L2	L3	L4	L5	L6	N1	N2	Approx Mass* kg
60A140C□	140	125	90	30	52.5	45	3	4	0.48
60A253C□	252.5	237.5	180	37.5	60	135	5	8	0.82
60A365C□	365	350	315	30	52.5	270	8	14	1.16


* The value indicates the mass of coil assembly with a hall sensor unit.

Standard Force Magnetic Way (SGLGM-60□□□CT)

Standard-force Magnetic Way Model SGLGM-:	L1	L2	N	Approx. Mass kg
60090CT	90	45	2	1.1
60225CT	225	180	5	2.6
60360CT	360	315	8	4.1
60405CT	405	360	9	4.6
60450CT	450	405	10	5.1

High-Force Magnetic Way (SGLGM-60□□□B-M)

High-force Magnetic Way Model SGLGM-	L1	L2	N	Approx. Mass kg
60090B-M	90	45	2	1.3
60225B-M	225	180	5	3.3
60360B-M	360	315	8	5.2
60405B-M	405	360	9	5.9
60450B-M	450	405	10	6.6

Coreless GW SGLG□-90 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

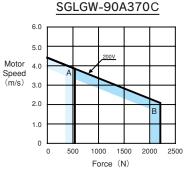
Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min. Enclosure: Self-cooled, air-cooling

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

Ratings and Specifications

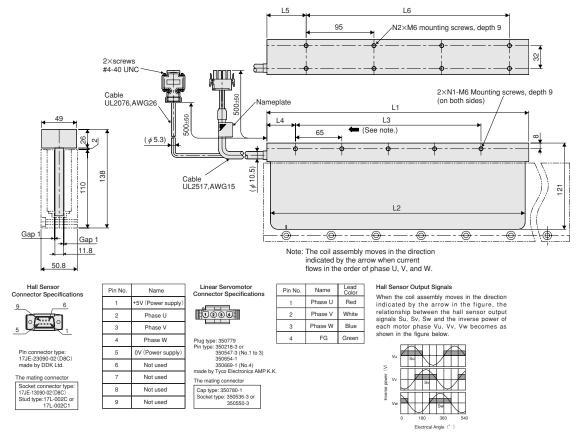
With Standard-force Magnetic Ways


Linear Servomotor Type SGLGW-		90A	
Linear Servomotor Type Salaw-1	200C	370 C	535 C
Rated Force * N	325	550	750
Rated Current * Arms	4.4	7.5	10.2
Instantaneous Peak Force * N	1300	2200	3000
Instantaneous Peak Current * Arms	17.6	30.0	40.8
Coil Assembly Mass kg	2.15	3.6	4.9
Force Constant N/Arms	78	78	78
BEMF Constant V/(m/s)	26.0	26.0	26.0
Motor Constant N/\sqrt{W}	26.0	36.8	45.0
Electrical Time Constant ms	1.4	1.4	1.4
Mechanical Time Constant ms	3.18	2.66	2.42
Thermal Resistance (with Heat Sink) K/W	0.44	0.30	0.25
Thermal Resistance (without Heat Sink) K/W	_		_
Magnetic Attraction N	0	0	0

Force and Speed Characteristics

A : Continuous Duty Zone B : Intermittent Duty Zone

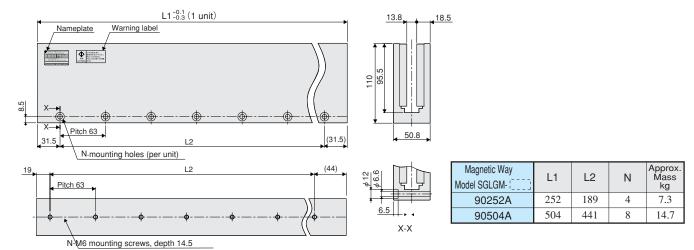
With Standard-force Magnetic Ways



- 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
- 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLGW- [7]	Heat Sink Size in mm
90A200C	
90A370C	800 X 900 X 12
90A535C	

Dimensional Drawings (Units: mm)


Coil Assembly (SGLGW-90A□□□C□)

Coil Assembly Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass* kg
90A200C□	199	189	130	40	60	95	3	4	2.2
90A370C□	367	357	260	40	55	285	5	8	3.7
90A535C□	535	525	455	40	60	380	8	10	5.0

^{*} The value indicates the mass of coil assembly with a hall sensor unit.

Magnetic Way (SGLGM-90□□A)

Iron-Core FW SGLF□-20 (200V)

Basic Specifications

Time Rating: Continuous

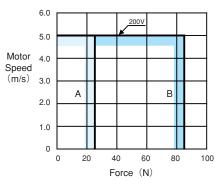
Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

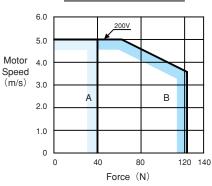
Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

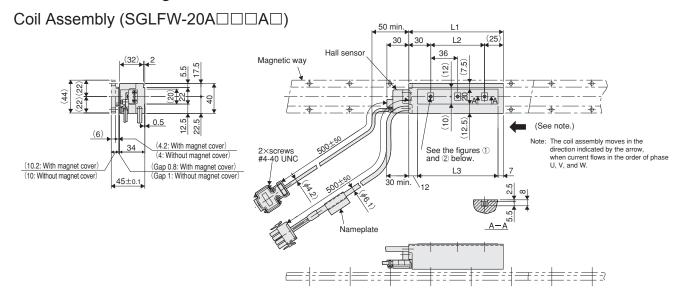

Ratings and Specifications

Linear Converser Type CCLEV	20)A	
Linear Servomotor Type SGLFV	V-'	090A	120A
Rated Force *	N	25	40
Rated Current *	Arms	0.7	0.8
Instantaneous Peak Force *	N	86	125
Instantaneous Peak Current *	Arms	3.0	2.9
Coil Assembly Mass	kg	0.7	0.9
Force Constant	N/Arms	36.0	54.0
BEMF Constant V	7/ (m/s)	12.0	18.0
Motor Constant	N/\sqrt{W}	7.9	9.8
Electrical Time Constant	ms	3.2	3.3
Mechanical Time Constant	ms	11.0	9.3
Thermal Resistance (with Heat Sink)	K/W	4.35	3.19
Thermal Resistance (without Heat Sir	nk) K/W	7.69	5.02
Magnetic Attraction	N	314	462


Force and Speed Characteristics

SGLFW-20A090A

SGLFW-20A120A



Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLFW-	Heat Sink Size in mm
20A090C 20A120C	125 X 125 X 13

Dimensional Drawings (Units: mm)

Pin No. Name

Phase U

Phase V

FG

Phase W Black

Red

White

Green

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

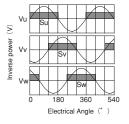
The mating connector Socket connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or 17L-002C1

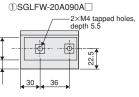
	Con
	n F
ipply)	III O

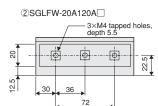
Pin No. Name +5V (Power su 2 Phase U 3 Phase V 4 Phase W 5 0V (Power supply Not used Not used 8 Not used

9

Linear Servomotor nnector Specifications

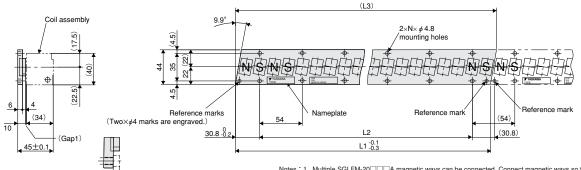

Plug type: 350779 2
Pin type: 350218-3 or 350547-3 (No.1 to 3) 4 350654-1 (No.4) made by Tyce Electronics AMP K.K.


The mating connector


Cap type: 350780-1 Socket type: 350536-3 or 350550-3

Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.



Coil Assembly Model SGLFW-:	L1	L2	L3	N	Approx. Mass kg
20A090A	91	36	72	2	0.7
20A120A□	127	72	108	3	0.9

The height of screw head:

Not used

Magnetic Way (SGLFM-20□□□A)

- Notes: 1. Multiple SGLFM-20 A magnetic ways can be connected. Connect magnetic ways so that the reference
 - marks match one on the other in the same direction as shown in the figure.

 2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

Mounting Screw						
	Magnetic Way Model SGLFM-	L1 -0.1	L2	(L3)	N	Approx. Mass kg
	20324A	324	270 (54×5)	(331.6)	6	0.9
	20540A	540	486 (54×9)	(547.6)	10	1.4
	20756A	756	702 (54×13)	(763.6)	14	2

Iron-Core FW SGLF□-35 (200V)

Basic Specifications

Time Rating: Continuous

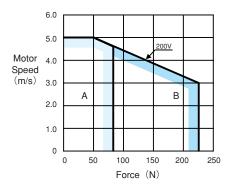
Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

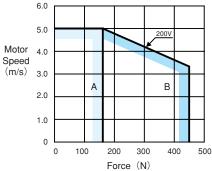
Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221° F) (UL tested for Class A insulation system)


Ratings and Specifications

Linear Conversator Type CCLEW (T		35	5A
Linear Servomotor Type SGLFW-	- 7	120A	230A
Rated Force *	N	80	160
Rated Current * Ar	ms	1.4	2.8
Instantaneous Peak Force *	N	220	440
Instantaneous Peak Current * Ar	ms	4.4	8.8
Coil Assembly Mass	kg	1.3	2.3
Force Constant N/Ar	ms	62.4	62.4
BEMF Constant V/(m	/s)	20.8	20.8
Motor Constant N/v	$\overline{\mathrm{W}}$	14.4	20.4
Electrical Time Constant	ms	3.6	3.6
Mechanical Time Constant	ms	6.2	5.5
Thermal Resistance (with Heat Sink) K	/W	1.57	0.96
Thermal Resistance (without Heat Sink) K	/W	4.10	1.94
Magnetic Attraction	N	809	1586

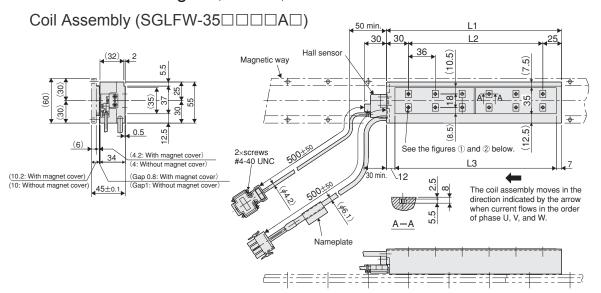
Force and Speed Characteristics



SGLFW-35A120A

6.0 5.0

SGLFW-35A230A



Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F)

- during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
- 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLFW-	Heat Sink Size in mm
35A120A 35A230A	254 x 254 x 13

Dimensional Drawings (Units: mm)

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector Socket connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name
1	+5V (Power supply)
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used

8

Linear Servomotor Connector Specifications

Plug type: 350779 Pin type: 350218-3 or 350547-3 (No.1 to 3) 350654-1

350669-1 (No.4) made by Tyco Electronics AMP K.K.

Pin No. Name

2

3

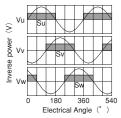
Phase U

Phase V

FG

Phase W Black

Red

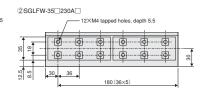

White

Green

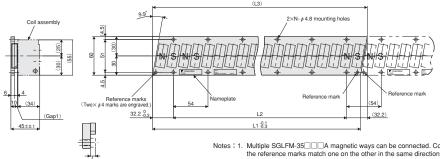
The mating connector Cap type: 350780-1 Socket type: 350536-3 or 350550-3

Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv. Vw becomes as shown in the figure



Coil Assembly Model SGLFW-	L1	L2	L3	N	Approx. Mass kg
35□120A□	127	72	108	6	1.3
35□230A□	235	180	216	12	2.3


Not used

Not used

①SGLFW-35□120A□
6×M4 tapped holes, depth

Magnetic Way (SGLFM-35□□□A)

The height of screw head must be 4.2 mm max Assembly Dimensions

Notes: 1. Multiple SGLFM-35 _ _A magnetic ways can be connected. Connect magnetic ways so that the reference marks match one on the other in the same direction as shown in the figure.

The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

Magnetic Way Model SGLFM-	L1 ^{-0.1}	L2	(L3)	N	Approx. Mass kg
35324A	324	270 (54×5)	(334.4)	6	1.2
35540A	540	486 (54×9)	(550.4)	10	2
35756A	756	702 (54×13)	(766.4)	14	2.9

Iron-Core FW SGLF□-50 (200V)

Basic Specifications

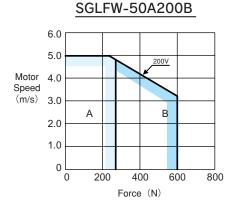
Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

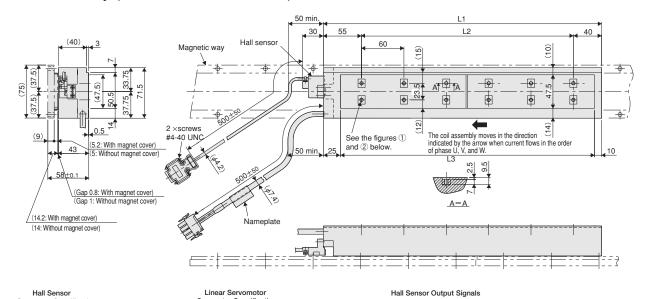
Enclosure: Self-cooled

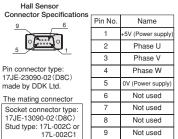

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

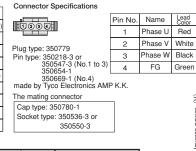
Ratings and Specifications

Linear Servomotor Type SGLFW-[11]	5	50A		
Linear Servomotor Type SGLFW-1113	200B	380B		
Rated Force *	N 280	560		
Rated Current * Arm	s 5.0	10.0		
Instantaneous Peak Force *	V 600	1200		
Instantaneous Peak Current * Arm	s 12.4	25.0		
Coil Assembly Mass k	g 3.5	6.9		
Force Constant N/Arm	s 60.2	60.2		
BEMF Constant V/(m/s	20.1	20.1		
Motor Constant N/√V	V 34.3	48.5		
Electrical Time Constant m	s 15.9	15.8		
Mechanical Time Constant m	s 3.0	2.9		
Thermal Resistance (with Heat Sink) K/V	V 0.82	0.32		
Thermal Resistance (without Heat Sink) K/V	V 1.48	0.74		
Magnetic Attraction	N 1650	3260		

Force and Speed Characteristics


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).


2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.


Linear Servomotor Model SGLFW-	Heat Sink Size in mm
50A200B	254×254×25
50A380B	400×500×40

Dimensional Drawings (Units: mm)

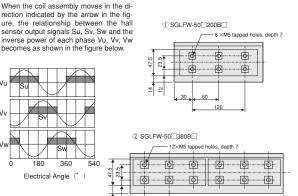
Coil Assembly (SGLFW-50 □□□□B□)

2	Vu Su	
Inverse power (V)	Vv Sv	_
Invers	Vw Sw Sw 0 180 360	_
	Electrical Angle (*	

 $607.5(67.5 \times 9)$

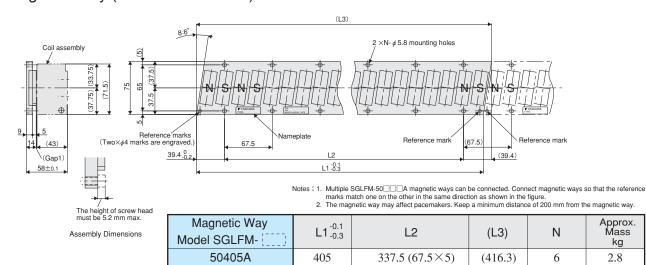
 $877.5 (67.5 \times 13)$

(686.3)


(956.3)

10

14


4.6

6.5

Coil Assembly Model SGLFW- []]	L1	L2	L3	N	Approx. Mass kg
50□200B□	215	120	180	6	3.5
50□380B□	395	300	360	12	6.9

Magnetic Way (SGLFM-50□□□A)

675

945

50675A

50945A

Iron-Core FW SGLF□-1Z (200V)

Basic Specifications

Time Rating: Continuous

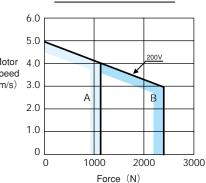
Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.


Enclosure: Self-cooled

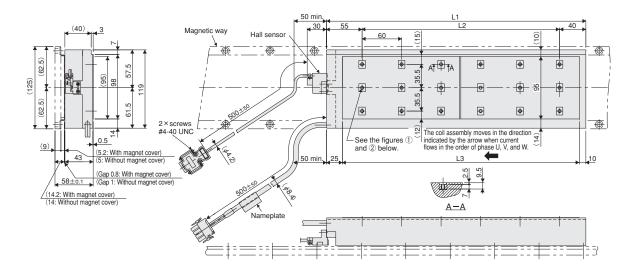
Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221° F) (UL tested for Class A insulation system)

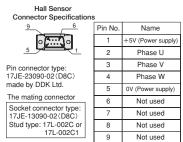

Ratings and Specifications

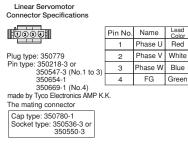
Linear Servomotor Type SGLFW-[]]		1ZA		
		200B	380B	
Rated Force *	N	560	1120	
Rated Current *	Arms	8.7	17.5	
Instantaneous Peak Force *	N	1200	2400	
Instantaneous Peak Current *	Arms	21.6	43.6	
Coil Assembly Mass	kg	6.4	11.5	
Force Constant	N/Arms	69.0	69.0	
BEMF Constant	V/(m/s)	23.0	23.0	
Motor Constant	N/\sqrt{W}	52.4	74.0	
Electrical Time Constant	ms	18.3	18.3	
Mechanical Time Constant	ms	2.3	2.1	
Thermal Resistance (with Heat Sink)	K/W	0.6	0.28	
Thermal Resistance (without Heat Si	ink) K/W	0.92	0.55	
Magnetic Attraction	N	3300	6520	

Force and Speed Characteristics

A : Continuous Duty Zone B : Intermittent Duty Zone

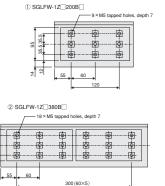



- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

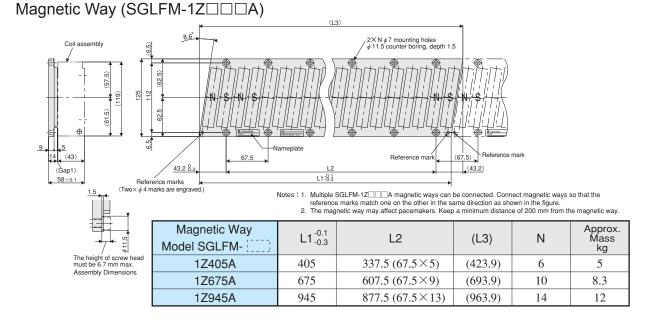

Linear Servomotor Model SGLFW-	Heat Sink Size in mm
1ZA200B	254×254×25
1ZA380B	400×500×40

Dimensional Drawings (Units: mm)

Coil Assembly (SGLFW-1Z□□□□B□)



ure ser inv	tion indicated by the arrow in the fig , the relationship between the ha isor output signals Su, Sv, Sw and the erse power of each motor phase Vu Vw becomes as shown in the figurow.
3	Vu Su
rse power	Vv
Inve	Vw Sw
Inverse power	Sv Vw


Electrical Angle (*)

When the coil assembly moves in the di-

Hall Sensor Output Signals

Coil Assembly Model SGLFW-[]]	L1	L2	L3	N	Approx. Mass kg
1Z□200B□	215	120	180	9	6.4
1Z□380B□	395	300	360	18	11.5

Iron-Core TW SGLT □-20 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

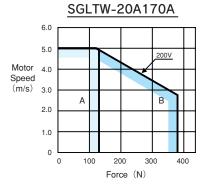
Excitation: Permanent Magnet

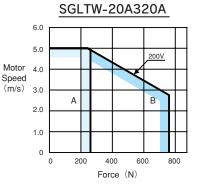
Dielectric Strength: 1500VAC for 1 min.

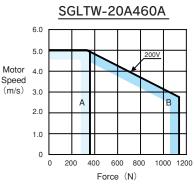
Enclosure: Self-cooled

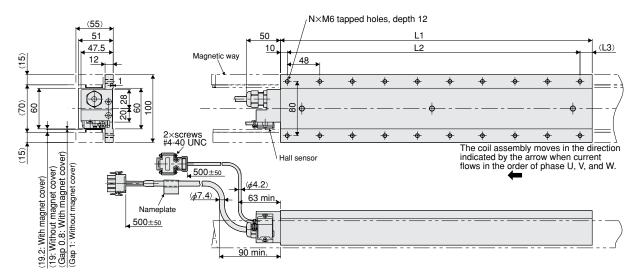
Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

Ratings and Specifications


Linear Conversator Type CCLTW (20A				
Linear Servomotor Type SGLTW-	170A	320A	460A			
Rated Force * N	130	250	380			
Rated Current * Arms	2.3	4.4	6.7			
Instantaneous Peak Force * N	380	760	1140			
Instantaneous Peak Current * Arms	7.7	15.4	23.2			
Coil Assembly Mass kg	2.5	4.6	6.7			
Force Constant N/Arms	61.0	61.0	61.0			
BEMF Constant V/(m/s)	20.3	20.3	20.3			
Motor Constant N/\sqrt{W}	18.7	26.5	32.3			
Electrical Time Constant ms	5.9	5.9	5.9			
Mechanical Time Constant ms	7.5	6.5	6.4			
Thermal Resistance (with Heat Sink) K/W	1.01	0.49	0.38			
Thermal Resistance (without Heat Sink) K/W	1.82	1.11	0.74			
Magnetic Attraction *1 N	0	0	0			
Magnetic Attraction *2 N	802	1591	2380			


^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.


Force and Speed Characteristics



- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-	Heat Sink Size in mm
20A170A	254×254×25
20A320A	400×500×40
20A460A	400 \ 300 \ 40

Dimensional Drawings (Units: mm)

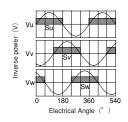
Coil Assembly (SGLTW-20A□□□A□)

Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.

The mating connector

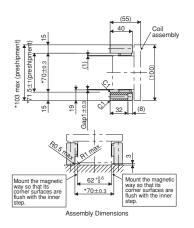
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or

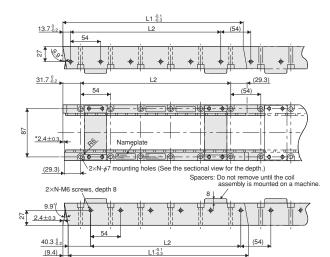
Pin No.	Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used



10000 Plug type: 350779
Pin type: 350218-3 or 350547-3 (No.1 to 3) 350654-1 350669-1 (No.4) made by Tyco Electronics AMP K.K.

The mating connector Cap type: 350780-1 Socket type: 350536-3 or 350550-3

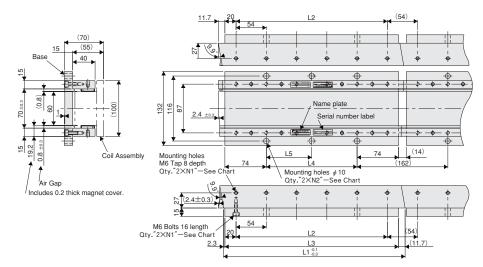



Red Phase V White Phase W Black 3 4 Ground Green Hall Sensor Output Signals
When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motoro phase Vu, V, W becomes as shown in the figure on the right.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
20A170A□	170	144 (48×3)	(16)	8	2.5
20A320A□	315	288 (48×6)	(17)	14	4.6
20A460A	460	432 (48×9)	(18)	20	6.7

Magnetic Way (SGLTM-20□□A)

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set.
 Spacers are mounted on magnetic ways for safety during transportation.
 Do not remove the spacers until the coil assembly is mounted on a
 machine.


 2 The magnetic way may affect pacemakers. Keep a minimum distance of
 200 mm from the magnetic way.

 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an* are the dimensions between the
 magnetic ways. Be sure to follow exactly the dimensions specified in the
 figure above. Mount magnetic ways as shown in Assembly Dimensions.
 The values with an* are the dimensions at preshipment.
 5 Use socket headed screws of strength class 10.9 minimum for magnetic
 way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
20324A	324	270 (54×5)	6	3.4
20540A	540	486 (54×9)	10	5.7
20756A	756	702 (54×13)	14	7.9

Magnetic Way with Base (SGLTM-20□□□AY)

Notes: 1	. Users of pacemakers and similar devices are strongly
	recommended to maintain minimum distance of 200mm from the magnets.

2.	The characteristics of the stators with bases are the same as
	the ones of the staters without bases (SGLTM 20 TA)

Magnetic Way Model SGLTM-[_]	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
20324AY	324	270	310	162	162	6	2	5.1
20540AY	540	486	526	378	189	10	3	8.5
20756AY	756	702	742	594	198	14	4	12

Iron-Core TW SGLT□-35 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

Ratings and Specifications

Linear Servomotor Type SGLTW-[]]		35A					
Linear Servomotor Type SGLTW-		170A	320A	460A	170H	320H	
Rated Force *	N	220	440	670	300	600	
Rated Current *	Arms	3.5	7	10.7	5.1	10.1	
Instantaneous Peak Force *	N	660	1320	2000	600	1200	
Instantaneous Peak Current *	Arms	12.1	24.2	36.7	11.9	23.9	
Coil Assembly Mass	kg	3.7	6.8	10.0	4.9	8.8	
Force Constant N	/Arms	67.5	67.5	67.5	64	64	
BEMF Constant V/	(m/s)	22.5	22.5	22.5	21.3	21.3	
Motor Constant	N/√W	26.7	37.5	46.4	37.4	52.9	
Electrical Time Constant	ms	6.9	6.8	7.0	15.1	15.1	
Mechanical Time Constant	ms	5.2	4.8	4.6	3.3	3.3	
Thermal Resistance (with Heat Sink)	K/W	0.76	0.44	0.32	0.76	0.4	
Thermal Resistance (without Heat Sink) K/W	1.26	0.95	0.61	1.26	0.83	
Magnetic Attraction *1	N	0	0	0	0	0	
Magnetic Attraction *2	N	1403	2784	4165	1400	2780	

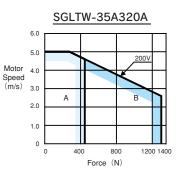
^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

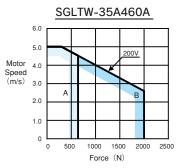
Force and Speed Characteristics A : Continuous Duty Zone B : Intermittent Duty Zone

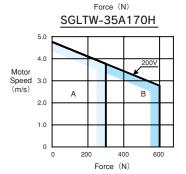
SGLTW-35A170A

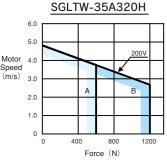
6.0

5.0

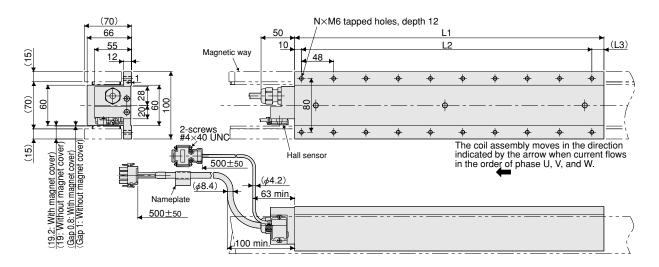

2.0


1.0


0


Motor _{4.0}

Speed (m/s) 3.0


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the table at right is mounted on the coil assembly.

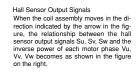
Linear Servomotor Model SGLTW-[-]	Heat Sink Size in mm
35A170A	254×254×25
35A320A	
35A460A	400×500×40
35A170H	400/\300/\40
35A320H	

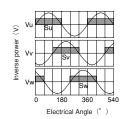
Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-35□□□□A□)

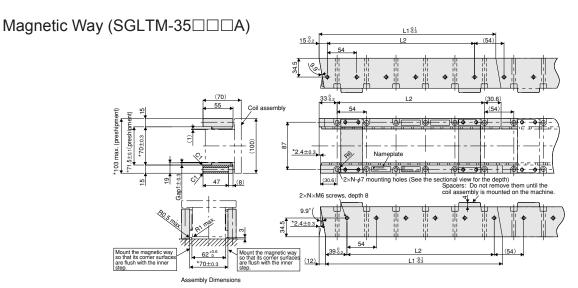
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector


Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1


	Name	Pin No.
Li Con	+5VDC	1
_	Phase U	2
	Phase V	3
Plu	Phase W	4
Pi	0V	5
_ m	Not used	6
Th	Not used	7
0	Not used	8
	Not used	9

M

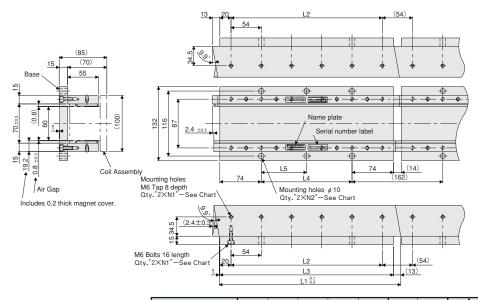

Pin No.	Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
a	Notuced

Pin No.	Name	Lead Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	Ground	Green
K.K.		
	1 2 3	1 Phase U 2 Phase V 3 Phase W 4 Ground

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
35□170A□	170	144 (48×3)	(16)	8	3.7
35□320A□	315	288 (48×6)	(17)	14	6.8
35□460A□	460	432 (48×9)	(18)	20	10

Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.

2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

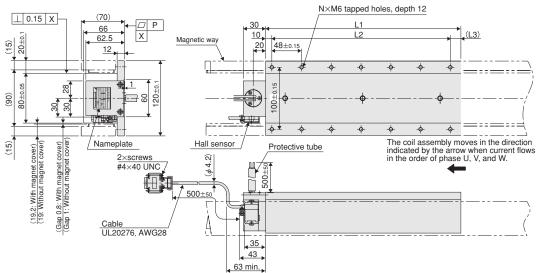

3 Two magnetic ways in a set can be connected to each other.

4 The dimensions marked with an* are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an* are the dimensions at preshipment.

5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 -0.1	L2	N	Approx. Mass kg
35324A	324	270 (54×5)	6	4.8
35540A	540	486 (54×9)	10	8
35756A	756	702 (54×13)	14	11

Magnetic Way with Base (SGLTM-35□□□AY)


Notes: 1. Users of pacemakers and similar devices are strongly recommended to maintain minimum distance of 200mm from the magnets.

2. The characteristics of the stators with bases are the same as

the ones of the stators without bases (SGLTM-35 _ _ _ A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
35324AY	324	270	310	162	162	6	2	6.4
35540AY	540	486	526	378	189	10	3	11
35756AY	756	702	742	594	198	14	4	15

Coil Assembly (SGLTW-35□□□□H□)

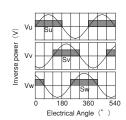
Wiring specifications of hall sensor cable

Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.

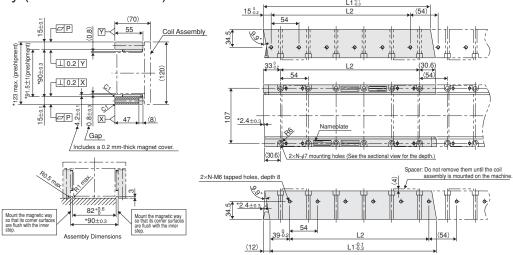
The mating connector

Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No	o. Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used


Lead specifications of coil assembly

If this cable is bent repetitively, the cable will disconnect.


View from top of coil assembly					
Name	Color	Code	Wire size		
Phase U		U			
Phase V	Black	٧	2mm ²		
Phase W		W			
Ground	Green	-	2mm ²		

Hall Sensor Output Signals Hall sensor Output signals
When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall
sensor output signals Su, Sv, Sw and the
inverse power of each motor phase Vu,
Vv, Vw becomes as shown in the figure
on the right. on the right.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
35□170H□	170	144 (48×3)	(16)	8	4.7
35□320H□	315	288 (48×6)	(17)	14	8.8

Magnetic Way (SGLTM-35□□□H)

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.

 - machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an* are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an* are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
35324H	324	270 (54×5)	6	4.8
35540H	540	486 (54×9)	10	8
35756H	756	702 (54×13)	14	11

Iron-Core TW SGLT□-50 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

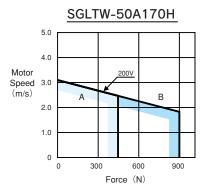
Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

A : Continuous Duty Zone B : Intermittent Duty Zone

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

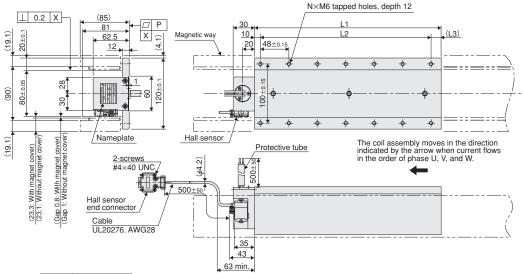

Ratings and Specifications

Linear Servomotor Type SGLTW-[]]		50	0A
Linear Servomotor Type SGLT	/V-'	170H	320H
Rated Force *	N	450	900
Rated Current *	Arms	4.9	9.8
Instantaneous Peak Force *	N	900	1800
Instantaneous Peak Current *	Arms	11.5	22.9
Coil Assembly Mass	kg	6	11
Force Constant	N/Arms	98.5	98.5
BEMF Constant	//(m/s)	32.8	32.8
Motor Constant	N/√W	50.3	71.1
Electrical Time Constant	ms	16.5	16.5
Mechanical Time Constant	ms	2.8	2.8
Thermal Resistance (with Heat Sink)	K/W	0.61	0.3
Thermal Resistance (without Heat Si	nk) K/W	0.97	0.8
Magnetic Attraction *1	N	0	0
Magnetic Attraction *2	N	2000	3980

^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes

Force and Speed Characteristics

- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.


Linear Servomotor Model SGLTW-	Heat Sink Size in mm
50A170H	400×500×40
50A320H	609×762×50

a magnetic attraction on the coil assembly.

*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Dimensional Drawings (Units: mm)

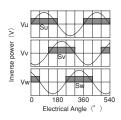
Coil Assembly (SGLTW-50□□□□H□)

Wiring specifications of hall sensor cable

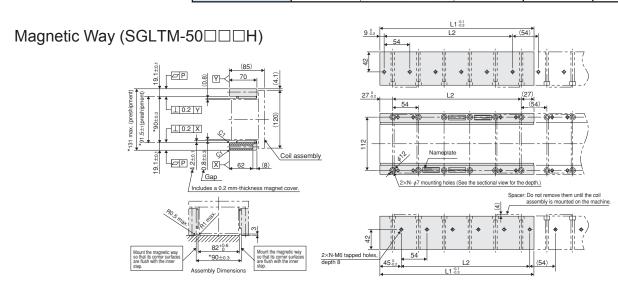
Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or


Pin No.	Name	
1	+5VDC	
2	Phase U	
3	Phase V	
4	Phase W	
5	0V	
6	Not used	
7	Not used	
8	Not used	
9	Not used	

Lead specifications of coil assembly If this cable is bent repetitively, the cable will disconnect.



Name Color Code Wire size Phase U U 2mm² Phase V W Phase W

Hall Sensor Output Signals When the coil assembly moves in the di-rection indicated by the arrow in the figrection indicated by the arrow in the light ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure on the right.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
50□170H□	170	144 (48×3)	(16)	8	6
50□320H□	315	288 (48×6)	(17)	14	11

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.

 - machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an* are the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an* are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
50324H	324	$270 (54 \times 5)$	6	8
50540H	540	486 (54×9)	10	13
50756H	756	$702 (54 \times 13)$	14	18

Iron-Core TW SGLT □-40 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

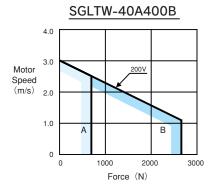
Dielectric Strength: 1500VAC for 1 min.

A: Continuous Duty Zone B: Intermittent Duty Zone

Enclosure: Self-cooled


Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221° F) (UL tested for Class A insulation system)

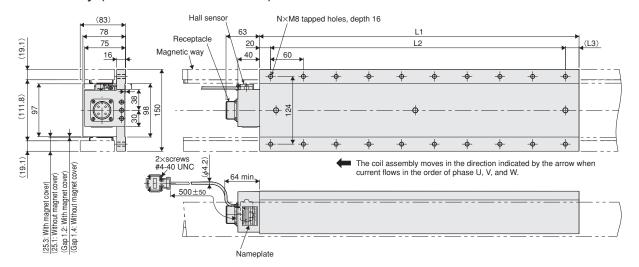
Ratings and Specifications


Linear Servomotor Type SGLTW-[]]		4()A
		400B	600B
Rated Force *	N	670	1000
Rated Current *	Arms	7.3	10.9
Instantaneous Peak Force *	N	2600	4000
Instantaneous Peak Current *	Arms	39.4	60.6
Coil Assembly Mass	kg	15	23
Force Constant	N/Arms	99.1	99.1
BEMF Constant \	7/(m/s)	33	33
Motor Constant	N/\sqrt{W}	61.4	75.2
Electrical Time Constant	ms	15.2	15.2
Mechanical Time Constant	ms	4	4
Thermal Resistance (with Heat Sink)	K/W	0.24	0.2
Thermal Resistance (without Heat Si	nk) K/W	0.57	0.4
Magnetic Attraction*1	N	0	0
Magnetic Attraction*2	N	3950	5890

^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Force and Speed Characteristics

Force (N)


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-	Heat Sink Size in mm
40A400B	609×762×50
40A600B	009 \ 702 \ 30

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-40□□□□B□)

Hall Sensor Connector Specifications

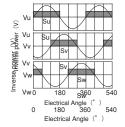
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

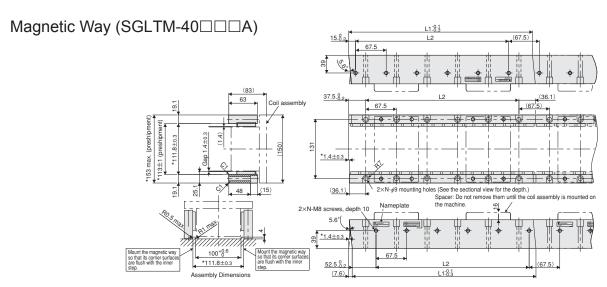
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name
1	+5V (Power supply
2	Phase U
3	Phase V
4	Phase W
5	0V (Power supply)
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications


Pin No.	Name
Α	Phase U
В	Phase V
С	Phase W
D	Ground

Receptacle type: MS3102A-22-22P made by DDK Ltd.


L-shaped plug type: MS3108B22-22S Straight plug type: MS3106B22-22S Cable clamp type: MS3057-12A

Hall Sensor Output Signals

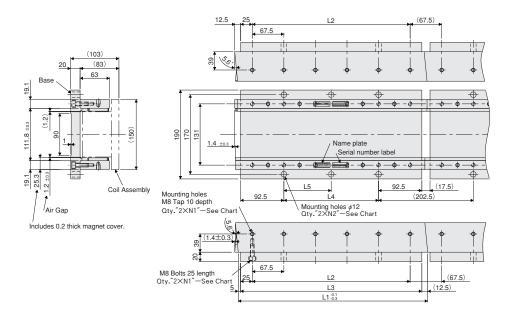
When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw, and the inverse power of each motor phase Vu, Vv, Whe becomes as shown in the figure on the right side.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
40□400B□	395	$360 (60 \times 6)$	(15)	14	20
40□600B□	585	540 (60×9)	(25)	20	30

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a

 - Do not remove the spacers until the coil assembly is mounted on a machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.


 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an * are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
40405A	405	337.5 (67.5×5)	6	9
40675A	675	607.5 (67.5×9)	10	15
40945A	945	877.5 (67.5×13)	14	21

Magnetic Way with Base (SGLTM-40□□□AY)

Notes : 1. Users of pacemakers and similar devices are strongly recommended to maintain minimum distance of 200mm from the magnets.

2.	The characteristics of the stators with bases are the same as
	the ones of the stators without bases (SGLTM-40 \square A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
40405AY	405	337.5	387.5	202.5	202.5	6	2	13
40675AY	675	607.5	657.5	472.5	236.25	10	3	21
40945AY	945	877.5	927.5	742.5	247.5	14	4	30

Iron-Core TW SGLT□-80 (200V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

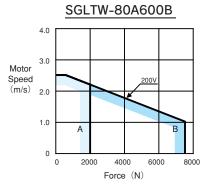
Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

A: Continuous Duty Zone B: Intermittent Duty Zone

Enclosure: Self-cooled

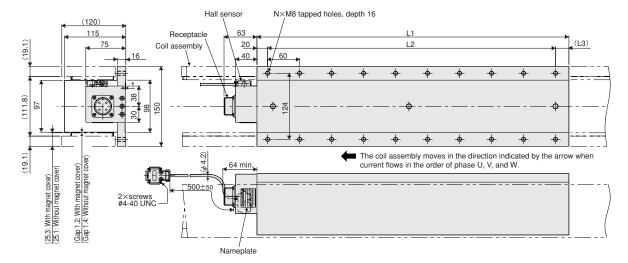

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)


Ratings and Specifications

Linear Servomotor Type SGLTW-[1]		80	OA AC
Linear Servomotor Type SGL	I VV-'	400B	600B
Rated Force *	N	1300	2000
Rated Current *	Arms	11.7	18
Instantaneous Peak Force *	N	5000	7500
Instantaneous Peak Current	* Arms	61	91.4
Coil Assembly Mass	kg	25	36
Force Constant	N/Arms	119.8	119.8
BEMF Constant	V/(m/s)	39.9	39.9
Motor Constant	N/\sqrt{W}	89.9	110.2
Electrical Time Constant	ms	17	17
Mechanical Time Constant	ms	3	3
Thermal Resistance (with Heat Sin	k) K/W	0.22	0.18
Thermal Resistance (without Heat	Sink) K/W	0.47	0.33
Magnetic Attraction*1	N	0	0
Magnetic Attraction*2	N	7650	11400

^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Force and Speed Characteristics


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-	Heat Sink Size in mm
80A400B	609×762×50
80A600B	009 ^ /02 ^ 30

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-80□□□□B□)

Hall Sensor Connector Specifications

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	OV
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

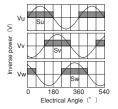
Pin No. Name

A Phase U

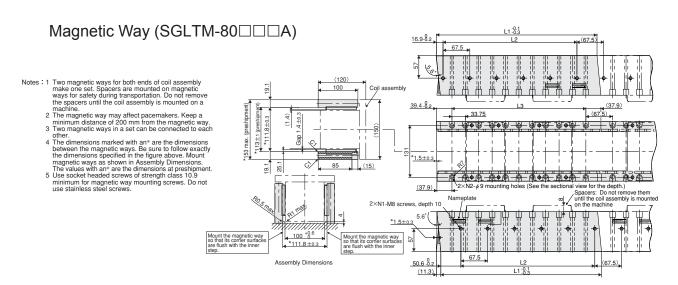
B Phase V

C Phase W

D Ground

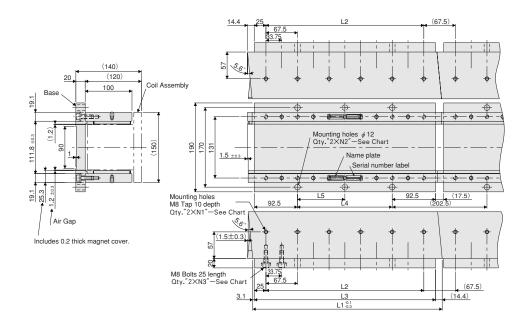

Receptacle type: MS3102A-22-22P made by DDK Ltd.

The mating connector


L-shaped plug type: MS3108B22-22S
Straight plug type: MS3106B22-22S
Cable clamp type: MS3057-12A

Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, VV,W becomes as shown in the figiure on the right side.



Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
80□400B□	395	360 (60×6)	(15)	14	30
80□600B□	585	540 (60×9)	(25)	20	43

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	L3	N1	N2	Approx. Mass kg
80405A	405	337.5 (67.5×5)	$337.5 (33.75 \times 10)$	6	11	14
80675A	675	607.5 (67.5×9)	$607.5 (33.75 \times 18)$	10	19	24
80945A	945	877.5 (67.5×13)	887.5 (33.75×26)	14	27	34

Magnetic Way with Base (SGLTM-80□□□AY)

Notes: 1. Users of pacemakers and similar devices are strongly recommended to maintain minimum distance of 200mm from the magnets.

2. The characteristics of the stators with bases are the same as the ones of the stators without bases (SGLTM-80□□□A).

Magnetic Way Model SGLTM-[_]	L1	L2	L3	L4	L5	N1	N2	N3	Approx. Mass kg
80405AY	405	337.5	387.5	202.5	202.5	6	2	11	18
80675AY	675	607.5	657.5	472.5	236.25	10	3	19	31
80945AY	945	877.5	927.5	742.5	247.5	14	4	27	43

Linear Sigma Servomotor Specifications (400V)

Iron-Core FW SGLF□-35 (400V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

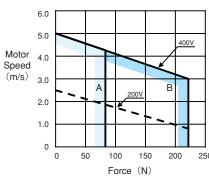
Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

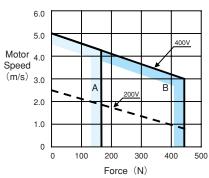
Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221° F) (UL tested for Class A insulation system)

Ratings and Specifications

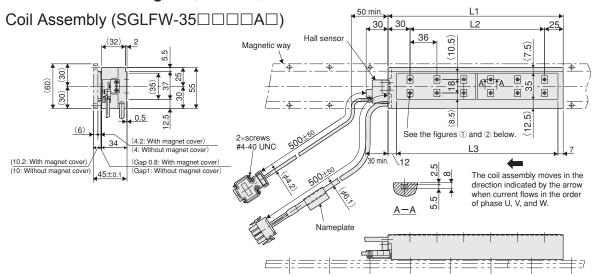

Linear Servomotor Type SGLFW-		35	5D
Linear Servomotor Type SGLFW	120A	230A	
Rated Force *	N	80	160
Rated Current *	Arms	0.7	1.4
Instantaneous Peak Force *	N	220	440
Instantaneous Peak Current *	Arms	2.3	4.6
Coil Assembly Mass	kg	1.3	2.3
Force Constant N	/Arms	120.2	120.2
BEMF Constant V/	(m/s)	40.1	40.1
Motor Constant	N/√W	13.8	19.5
Electrical Time Constant	ms	3.5	3.5
Mechanical Time Constant	ms	5.5	5.5
Thermal Resistance (with Heat Sink)	K/W	1.57	0.96
Thermal Resistance (without Heat Sink	() K/W	4.1	1.94
Magnetic Attraction	N	810	1590

Force and Speed Characteristics



SGLFW-35D120A

SGLFW-35D230A



Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.

- 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
- 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLFW-	Heat Sink Size in mm
35D120A	254×254×25
35D230A	234 \ 234 \ 23

Dimensional Drawings (Units: mm)

Pin No.

3

Name

FG Green

Phase II Red

Phase V White

Phase W Black

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

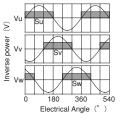
The mating connector Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

+5V (Power supply 2 Phase U 3 Phase V Phase W 5 0V (Power supply 6 Not used Not used Not used

Name

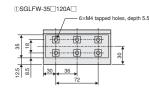
Pin No.

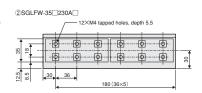
Linear Servomotor Connector Specifications

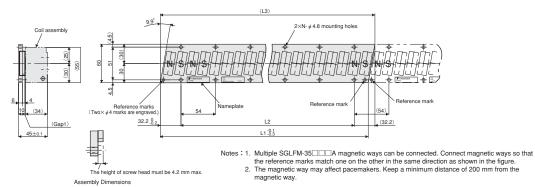

Plug type: 350779 Pin type: 350218-3 or 350547-3 (No.1 to 3) 350654-1

350669-1 (No.4) made by Tyco Electronics AMP K.K. The mating connector

Cap type: 350780-1 Socket type: 350536-3 or 350550-3


Hall Sensor Output Signals


When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure


Coil Assembly Model SGLFW-	L1	L2	L3	N	Approx. Mass kg
35□120A□	127	72	108	6	1.3
35□230A□	235	180	216	12	2.3

Not used

Magnetic Way (SGLFM-35□□□A)

Approx. Mass Magnetic Way L1 ^{-0.1} L2 (L3)Ν Model SGLFMkg $270 (54 \times 5)$ 35324A 324 (334.4)6 1.2 486 (54×9) 2 35540A 540 (550.4)10 $702 (54 \times 13)$ 2.9 35756A 756 (766.4)14

Iron-Core FW SGLF□-50 (400V)

Basic Specifications

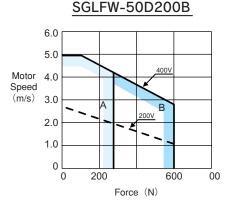
Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

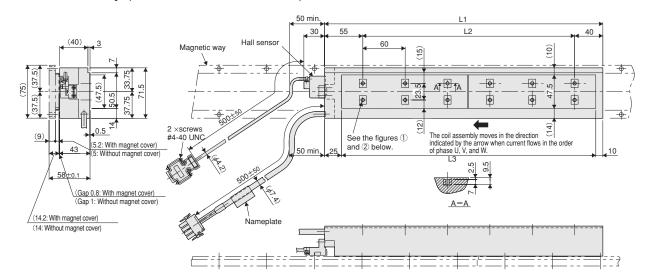
Enclosure: Self-cooled


Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

Ratings and Specifications

Linear Servomotor Type SGLFW-[]]		50)D
		200B	380B
Rated Force *	N	280	560
Rated Current *	Arms	2.3	4.5
Instantaneous Peak Force *	N	600	1200
Instantaneous Peak Current *	Arms	5.6	11.0
Coil Assembly Mass	kg	3.5	6.9
Force Constant N	/Arms	134.7	134.7
BEMF Constant V/	(m/s)	44.9	44.9
Motor Constant	N/\sqrt{W}	33.4	47.2
Electrical Time Constant	ms	15.0	15.0
Mechanical Time Constant	ms	3.2	3.2
Thermal Resistance (with Heat Sink)	K/W	0.82	0.32
Thermal Resistance (without Heat Sink	() K/W	1.48	0.74
Magnetic Attraction	N	1650	3260

Force and Speed Characteristics


Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.

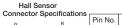
- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLFW-[]]	Heat Sink Size in mm
50D200B	254×254×25
50D380B	400×500×40

Dimensional Drawings (Units: mm)

Coil Assembly (SGLFW-50 □□□□B□)

Name


Phase U

FG

Phase W Black

Red Phase V White

Green

Stud type: 17L-002C or

Coil Assembly

Model SGLFW-

17L-002C1

9 6		1 111 140.	IVallic
		1	+5V (Power suppl
5		2	Phase U
		3	Phase V
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd. The mating connector		4	Phase W
		5	0V (Power supply
		6	Not used
Socket connector type:		7	Not used
17JE-13090-02(D8C)		8	Not used

8

9

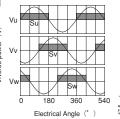
L1

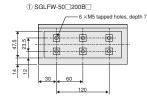
Linear Servomotor Connector Specifications

112301	Pin N
HOGOOH	1
Plug type: 350779	2
Pin type: 350218-3 or	3
350547-3 (No.1 to 3) 350654-1	4
0500004 (M. 4)	

350669-1 (No.4) made by Tyco Electronics AMP K.K The mating connector

Approx.


Mass


kg

Cap type: 350780-1 Socket type: 350536-3 or 350550-3

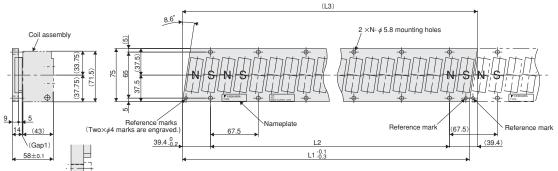
Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each phase Vu, Vv, Vw becomes as shown in the figure below.

	② SGLF\	N-50□3	80B□					
Г	12×M5 tapped holes, depth 7							
23.5	-₫	·		- <u>-</u>				
74 82		<u></u> -ф		·ф				
41 21	30 6	0	300)(60×5)				

50 200B 215 120 180 6 3.5 395 300 360 12 6.9 50 380B

L2


L3

Ν

Not used

Not used

Magnetic Way (SGLFM-50□□□A)

Notes: 1. Multiple SGLFM-50 ——A magnetic ways can be connected. Connect magnetic ways so that the reference marks match one on the other in the same direction as shown in the figure.

2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

Manadia Ma Assembly Dimensions

Model SGLFM-	L1 ^{-0.1}	L2	(L3)	N	Mass kg
50405A	405	337.5 (67.5×5)	(416.3)	6	2.8
50675A	675	607.5 (67.5×9)	(686.3)	10	4.6
50945A	945	877.5 (67.5×13)	(956.3)	14	6.5

Iron-Core FW SGLF□-1Z (400V)

Basic Specifications

Time Rating: Continuous

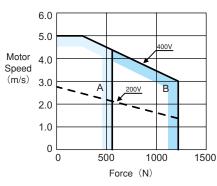
Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)


Ratings and Specifications

Linear Servomotor Type SGLFW-[]]	1	ZD
Linear Servomotor Type SGLI W-1	200B	380B
Rated Force *	N 560	1120
Rated Current * Arm	s 4.9	9.8
Instantaneous Peak Force *	N 1200	2400
Instantaneous Peak Current * Arm	s 12.3	24.6
Coil Assembly Mass kg	g 6.4	11.5
Force Constant N/Arm	s 122.6	122.6
BEMF Constant V/(m/s)	40.9	40.9
Motor Constant N/\sqrt{V}	V 51.0	72.1
Electrical Time Constant m	s 17.4	17.2
Mechanical Time Constant m	s 2.5	2.2
Thermal Resistance (with Heat Sink) K/W	V 0.6	0.28
Thermal Resistance (without Heat Sink) K/W	V 0.92	0.55
Magnetic Attraction	N 3300	6520

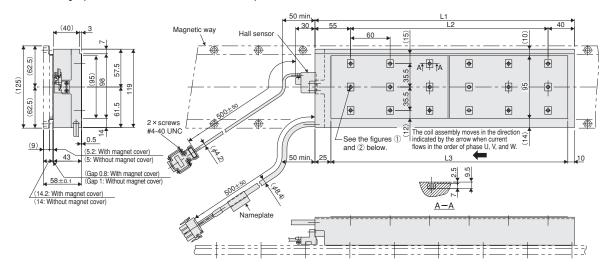
Force and Speed Characteristics

SGLFW-1ZD200B

6.0 5.0 Speed (m/s) 3.0 2.0 1.0 0 1000 2000 3000 Force (N)

SGLFW-1ZD380B

Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLFW-[]	Heat Sink Size in mm
1ZD200B	254×254×25
1ZD380B	400×500×40

Dimensional Drawings (Units: mm)

Coil Assembly (SGLFW-1Z □□□□B□)

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector Socket connector type 17JE-13090-02 (D8C) Stud type: 17L-002C or 17L-002C1

Coil Assembly

Model SGLFW- []

1Z 200B

1Z_380B_

Name

+5V (Power supply) 2 Phase U 3 Phase V 4 Phase W 5 0V (Power supply) 6 Not used 7 Not used 8 Not used 9 Not

Pin No.

L1

215

395

Linear Servomotor Connector Specifications

1000 Plug type: 350779 Plug type: 3507/9
Pin type: 350218-3 or 350547-3 (No.1 to 3) 350669-1 (No.4)
made by Tyco Electronics AMP K.K.

Pin No.

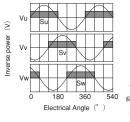
2

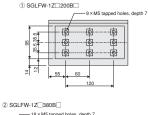
Name

Phase U

Phase V White

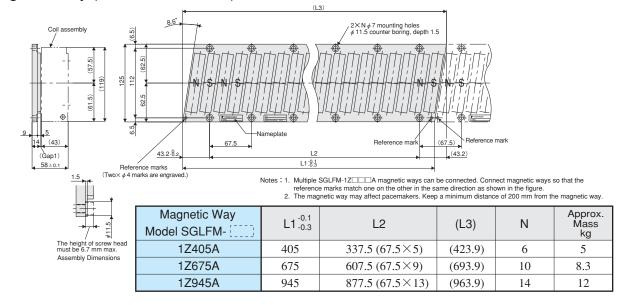
Phase W Blue


Red


Green

The mating connector Cap type: 350780-1 Socket type: 350536-3 or 350550-3

Hall Sensor Output Signals


When the coil assembly moves in the direction indicated by the arrow in the fig-ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below

Not used			000000 0	18 × MS tapped holes, dep
L2	L3	N	Approx. Mass kg	0 180 360 540 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
120	180	9	6.4	
300	360	18	11.5	

Magnetic Way (SGLFM-1Z□□□A)

Iron-Core TW SGLT□-35 (400V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

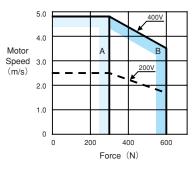
Excitation: Permanent Magnet

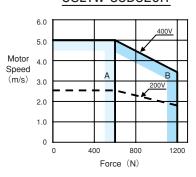
Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing)
Allowable Winding Temperature: 105°C (221° F)
(UL tested for Class A insulation system)

Ratings and Specifications


Linear Servomotor Type SGLTW-[]]		3	35D		
		170H	320H		
Rated Force *	N	300	600		
Rated Current *	Arms	3.2	6.5		
Instantaneous Peak Force *	N	600	1200		
Instantaneous Peak Current	* Arms	7.5	15.1		
Coil Assembly Mass	kg	4.7	8.8		
Force Constant	N/Arms	99.6	99.6		
BEMF Constant	V/(m/s)	33.2	33.2		
Motor Constant	N/\sqrt{W}	36.3	51.4		
Electrical Time Constant	ms	14.3	14.3		
Mechanical Time Constant	ms	3.5	3.5		
Thermal Resistance (with Heat Sink	() K/W	0.76	0.4		
Thermal Resistance (without Heat S	Sink) K/W	1.26	0.83		
Magnetic Attraction *1	N	0	0		
Magnetic Attraction *2	N	1400	2780		

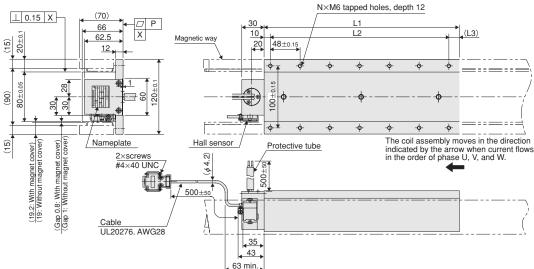

^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.

Force and Speed Characteristics

SGLTW-35D170H

Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.

Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).


2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-[]	Heat Sink Size in mm
35D170H	400 × 500 × 40
35D320H	$400 \times 500 \times 40$

^{*2.} The value indicates the magnetic attraction generated on one side of the magnetic way.

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-35 □□□□H□)

Wiring specifications of hall sensor cable

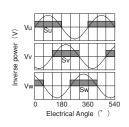
Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

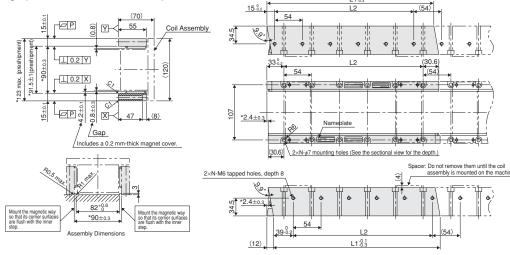
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name	
1	+5VDC	
2	Phase U	
3	Phase V	
4	Phase W	
5	0V	
6	Not used	
7	Not used	
8	Not used	
9	Not used	

Lead specifications of coil assembly


- If this cable is bent repetitively, the cable will

View from top of coil assembly								
Name Color Code Wire size								
Phase U		U						
Phase V	Black	٧	2mm ²					
Phase W		W						
Ground	Green		2mm ²					


Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure on the right. on the right.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
35□170H□	170	144 (48×3)	(16)	8	4.7
35□320H□	315	288 (48×6)	(17)	14	8.8

Magnetic Way (SGLTM-35□□□H)

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a

 - Do not remove the spacers until the coil assembly is mounted on a machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
35324H	324	270 (54×5)	6	4.8
35540H	540	486 (54×9)	10	8
35756H	756	702 (54×13)	14	11

Iron-Core TW SGLT□-50 (400V)

Basic Specifications

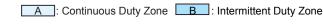
Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

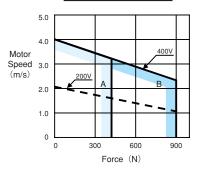
Excitation: Permanent Magnet

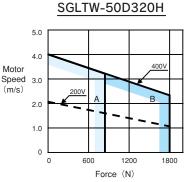
Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled


Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221° F) (UL tested for Class A insulation system)

Ratings and Specifications

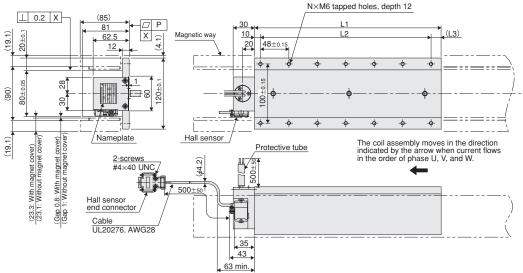

Linear Servomotor Type SGLTW-[]]		50)D
Linear Servomotor Type SGLTV	170H	320H	
Rated Force *	N	450	900
Rated Current *	Arms	3.2	6.3
Instantaneous Peak Force *	N	900	1800
Instantaneous Peak Current *	Arms	7.3	14.6
Coil Assembly Mass	kg	6	11
Force Constant	N/Arms	153.3	153.3
BEMF Constant V	//(m/s)	51.1	51.1
Motor Constant	N/\sqrt{W}	48.9	69.1
Electrical Time Constant	ms	15.6	15.6
Mechanical Time Constant	ms	2.5	2.5
Thermal Resistance (with Heat Sink)	K/W	0.61	0.3
Thermal Resistance (without Heat Sir	nk) K/W	0.97	0.8
Magnetic Attraction *1	N	0	0
Magnetic Attraction *2	N	2000	3980


^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Force and Speed Characteristics

SGLTW-50D170H

Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-[]]	Heat Sink Size in mm
50D170H	400×500×40
50D320H	609×762×50

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-50 □□□□H□)

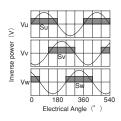
Wiring specifications of hall sensor cable

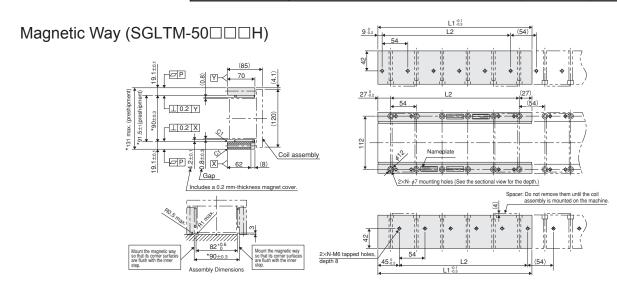
Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or

Pin No.	Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used


Lead specifications of coil assembly If this cable is bent repetitively, the cable will disconnect.


Name Color Code Wire size Phase U U 2mm² W Phase W

Hall Sensor Output Signals When the coil assembly moves in the di-rection indicated by the arrow in the fig-

rection indicated by the arrow in the light ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure on the right.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
50□170H□	170	144 (48×3)	(16)	8	6
50□320H□	315	288 (48×6)	(17)	14	11

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.

 - machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.

 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an* are the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an* are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 -0.1	L2	N	Approx. Mass kg
50324H	324	270 (54×5)	6	8
50540H	540	486 (54×9)	10	13
50756H	756	702 (54×13)	14	18

Iron-Core TW SGLT □-40 (400V)

Basic Specifications

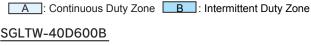
Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more Ambient Temperature: 0 to 40°C (32 to 104°F)

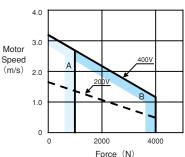
Excitation: Permanent Magnet

Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled


Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

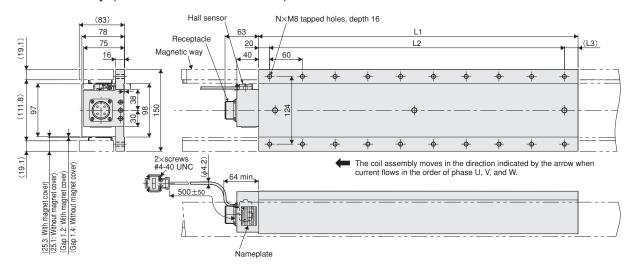
Ratings and Specifications


Linear Servemeter Type SGLTW		40)D
Linear Servomotor Type SGLTW-	Linear Servomotor Type SGLTW-		600B
Rated Force *	N	670	1000
Rated Current *	Arms	3.7	5.5
Instantaneous Peak Force *	N	2600	4000
Instantaneous Peak Current *	Arms	20.7	30.6
Coil Assembly Mass	kg	15	23
Force Constant N/	'Arms	196.1	196.1
BEMF Constant V/	(m/s)	65.4	65.4
Motor Constant	N/\sqrt{W}	59.6	73
Electrical Time Constant	ms	14.4	14.4
Mechanical Time Constant	ms	4.2	4.2
Thermal Resistance (with Heat Sink)	K/W	0.24	0.2
Thermal Resistance (without Heat Sink	K/W	0.57	0.4
Magnetic Attraction *1	N	0	0
Magnetic Attraction *2	N	3950	5890

^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Force and Speed Characteristics

Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.


Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).

2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-	Heat Sink Size in mm
40D400B	609×762×50
40D600B	009 ^ /02 ^ 30

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-40 □□□□B□)

Hall Sensor Connector Specifications

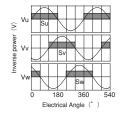
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

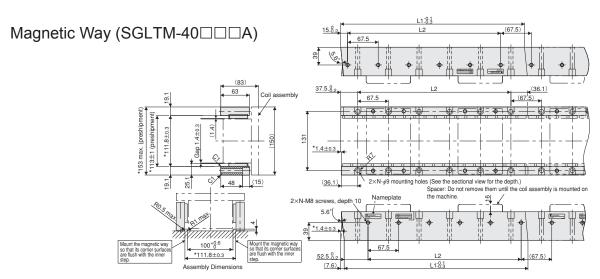
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name		
1	+5V (Power supply		
2	Phase U		
3	Phase V		
4	Phase W		
5	0V (Power supply)		
6	Not used		
7	Not used		
8	Not used		
9	Not used		

Linear Servomotor Connector Specifications


Pin No.	Name
Α	Phase U
В	Phase V
С	Phase W
D	Ground

Receptacle type: MS3102A-22-22P made by DDK Ltd.


L-shaped plug type: MS3108B22-22S Straight plug type: MS3106B22-22S Cable clamp type: MS3057-12A

Hall Sensor Output Signals

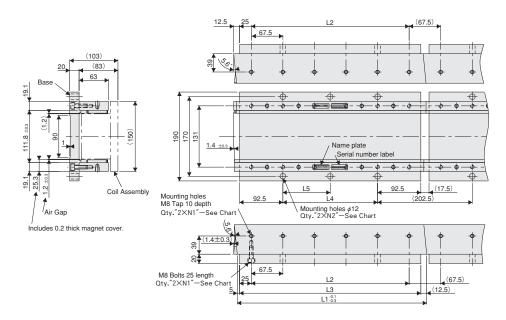
When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw, and the inverse power of each motor phase Vu, Vv, Whe becomes as shown in the figure on the right side.

Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
40□400B□	395	360 (60×6)	(15)	14	20
40□600B□	585	540 (60×9)	(25)	20	30

- Notes: 1 Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a

 - Do not remove the spacers until the coil assembly is mounted on a machine.

 2 The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.


 3 Two magnetic ways in a set can be connected to each other.

 4 The dimensions marked with an * are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an * are the dimensions at preshipment.

 5 Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	N	Approx. Mass kg
40405A	405	337.5 (67.5×5)	6	9
40675A	675	607.5 (67.5×9)	10	15
40945A	945	877.5 (67.5×13)	14	21

Magnetic Way with Base (SGLTM-40□□□AY)

Notes: 1. Users of pacemakers and similar devices are strongly recommended to maintain minimum distance of 200mm from the magnets.

2. The characteristics of the stators with bases are the same as the ones of the stators without bases (SGLTM-40□□□A).

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass kg
40405AY	405	337.5	387.5	202.5	202.5	6	2	13
40675AY	675	607.5	657.5	472.5	236.25	10	3	21
40945AY	945	877.5	927.5	742.5	247.5	14	4	30

Iron-Core TW SGLT□-80 (400V)

Basic Specifications

Time Rating: Continuous

Insulation Resistance: 500VDC, 10M or more

Ambient Temperature: 0 to 40°C (32 to 104°F)

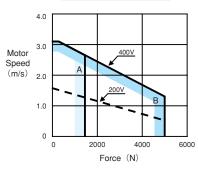
Excitation: Permanent Magnet

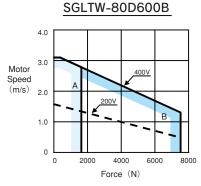
Dielectric Strength: 1500VAC for 1 min.

Enclosure: Self-cooled

Ambient Humidity: 20 to 80% (non-condensing) Allowable Winding Temperature: 105°C (221°F) (UL tested for Class A insulation system)

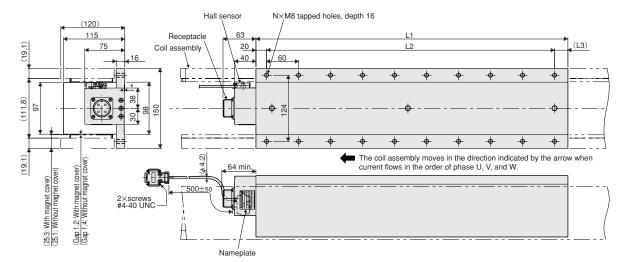
Ratings and Specifications


Linear Servomotor Type SGLTW-[]]		80)D
Linear Servomotor Type SGLTV	400B	600B	
Rated Force *	N	1300	2000
Rated Current *	Arms	7.2	11.1
Instantaneous Peak Force *	N	5000	7500
Instantaneous Peak Current *	Arms	37.6	56.4
Coil Assembly Mass	kg	25	36
Force Constant	N/Arms	194.4	194.4
BEMF Constant	//(m/s)	64.8	64.8
Motor Constant	N/\sqrt{W}	85.9	105.2
Electrical Time Constant	ms	15.4	15.4
Mechanical Time Constant	ms	3.2	3.2
Thermal Resistance (with Heat Sink)	K/W	0.22	0.18
Thermal Resistance (without Heat Sir	nk) K/W	0.47	0.33
Magnetic Attraction *1	N	0	0
Magnetic Attraction *2	N	7650	11400


^{*1.} The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attraction on the coil assembly.
*2. The value indicates the magnetic attraction generated on one side of the magnetic way.

Force and Speed Characteristics

SGLTW-80D400B


Note: The dotted line indicates characteristics when the linear servomotor for 400VAC is used with an input power supply for 200VAC. In this case, the serial converter should be changed. Contact your Yaskawa representative.

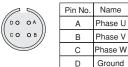
- Notes: 1. Items marked with * and Force and Speed Characteristics are values at a motor winding temperature of 100°C (212°F) during operation in combination with a SERVOPACK. The others are at 20°C (68°F).
 - 2. The specifications show the values under the cooling condition when a heat sink (aluminum board) listed in the following table is mounted on the coil assembly.

Linear Servomotor Model SGLTW-[]]	Heat Sink Size in mm
80D400B	600 × 762 × 50
80D600B	$609 \times 762 \times 50$

Dimensional Drawings (Units: mm)

Coil Assembly (SGLTW-80 □□□□B□)

Hall Sensor Connector Specifications

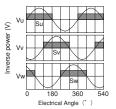

Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.

The mating connector

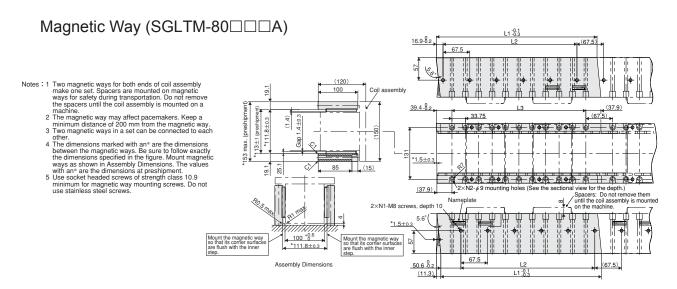
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or 17L-002C1

Pin No.	Name
1	+5VDC
2	Phase U
3	Phase V
4	Phase W
5	0V
6	Not used
7	Not used
8	Not used
9	Not used

Linear Servomotor Connector Specifications

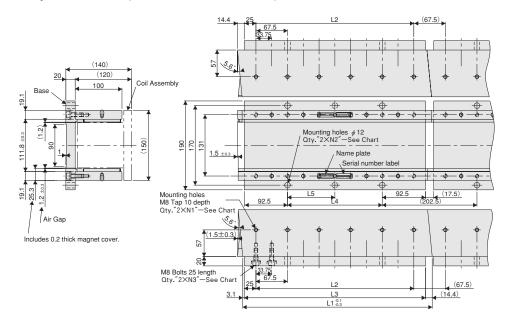

Receptacle type: MS3102A-22-22P made by DDK Ltd.

The mating connector


L-shaped plug type: MS3108B22-22S
Straight plug type: MS3106B22-22S
Cable clamp type: MS3057-12A

Pin No. Name Hall Sensor Output Signals

When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, VV,W becomes as shown in the figiure on the right side.



Coil Assembly Model SGLTW-	L1	L2	L3	N	Approx. Mass kg
80□400B□	395	360 (60×6)	(15)	14	30
80□600B□	585	540 (60×9)	(25)	20	43

Magnetic Way Model SGLTM-	L1 ^{-0.1}	L2	L3	N1	N2	Approx. Mass kg
80405A	405	337.5 (67.5×5)	$337.5 (33.75 \times 10)$	6	11	14
80675A	675	607.5 (67.5×9)	$607.5 (33.75 \times 18)$	10	19	24
80945A	945	877.5 (67.5×13)	887.5 (33.75×26)	14	27	34

Magnetic Way with Base (SGLTM-80□□□AY)

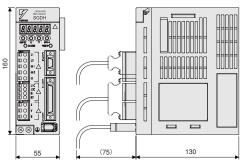
Notes: 1. Users of pacemakers and similar devices are strongly recommended to maintain minimum distance of 200mm from the magnets.

2. The characteristics of the stators with bases are the same as the ones of the stators without bases (SGLTM-80□□□A).

Magnetic Way Model SGLTM-[_]	L1	L2	L3	L4	L5	N1	N2	N3	Approx. Mass kg
80405AY	405	337.5	387.5	202.5	202.5	6	2	11	18
80675AY	675	607.5	657.5	472.5	236.25	10	3	19	31
80945AY	945	877.5	927.5	742.5	247.5	14	4	27	43

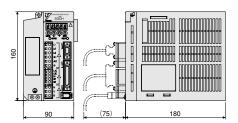
Servo Amplifier (SERVOPACK) Specifications

SGDH

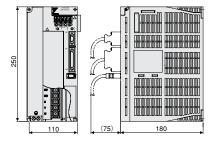

SUS	S	Hsage	storage Temperature	0 to +55℃/-20 to +85℃
Basic Specifications	Conditions	Usage/storage Humidity		90% RH or less (non-condensing)
pecif	diti	Altitude		1000m or less above sea level
asic S	Sor		on/Shock Resistance	4.9m/s² / 19.6m/s²
<u> </u>			Control Range	1:5000 (The lower limit of speed is under rated load and no stopping conditions.)
		Load Damilation		During 0 to 100% load: ±0.01% or less (at rated speed)
	Jce	Speed	Voltage Regulation	
0	maı	Regula	tion Temperature Regulation	· · · · · · · · · · · · · · · · · · ·
ode	Performance	Гиодио	ency Characteristics	·
Σ	Per			400Hz (when load mass = coil mass) ±2%
l tro			ntrol Tolerance(Repeatability) art Time Setting	
Co		30II 3I	art Time Setting	0 to 10s (Acceleration, deceleration each.)
g		Speed	Reference Voltage	±6VDC at rated speed: set at delivery
Speed/Force Control Mode	_	Refere	nce	Variable setting range: ± 2 to ± 10 VDC at rated speed/max. input voltage: ± 12 V Approx. 14 k Ω
/pa	Signal	Input	Input Impedance	
be	Š		Circuit Time Constant	
_O	Input	Force	Reference Voltage	±3VDC at rated force: set at delivery
	느	Refere	200	Variable setting range: ±1 to ±10VDC at rated force reference / max. input voltage: ±12V
		Input	input impedance	Approx. 14kΩ
	0		Circuit Time Constant	11 7
de	Performance	Bias S		0 to 450 mm/s. (setting resolution: 1 mm/s)
Position Control Mode	rform		rward Gain Compensation	•
힏	Pe	Position	Completed Width Setting	0 to 250 reference units (setting resolution: 1 reference unit)
ont	ignal		Input Pulse Type	Sign + pulse train, 90° phase difference 2-phase pulse (phase A + phase B), or
l O l	Reference Reference			CCW/CW pulse train
itio	ut Si	Pulse	Input Pulse Form	Line driver (+5V level), open collector (+5V or +12V level)
Soc	Input Pulse Frequency Control Signal		Input Pulse Frequency	500kpps max. (200kpps max. at open collector)
				Clear signal (input pulse form is same as reference input pulse form)
	Pos	ition Ou	tput Signal	Phase A, phase B, phase C: Line driver output.
nal	Sequence Input Signal		nput Signal	Servo ON, pole detection start (or control mode switching, zero clamp, reference pulse inhibit),
Signal	<u> </u>			forward / reverse run prohibit, alarm reset, forward/reverse current limit (or internal speed selection)
0		_		Servo alarm, alarm codes (3-bit output): CN1 output terminal is fixed.
	Sec	luence (Output Signal	It is possible to output three types of signals from among: positioning complete (or speed coincidence),
				motor moving, servo ready, current limit, speed limit, brake release, warning, and NEAR.
			Interface	Digital operator (hand-held type),
		-		RS-422A port for PCs, etc. (RS-232C ports under some conditions)
	Comn	nunications	1: N Communications	N may equal up to 14 when an RS-422A port is used.
			Axis Address Setting	Set by user setting parameter.
			Items	Status display, user parameter setting, monitor display, alarm traceback display, JOG run/
				auto-tuning operations, and graphing functions for speed/torque reference signal, etc.
દ		o-tuning		Position/speed loop gain and integral time constant can be automatically set.
tio			ake (DB)	Operates at main power OFF, servo alarm, servo OFF or overtravel
Internal Functions			re Processing	Regenerative resistor externally mounted (option)
<u></u>			OT) Prevention	DB stop, deceleration stop or coast to stop at P-OT, N-OT operation
rne	Encoder Divider			Optional division possible
Inte	Electronic Gearing			0.01 < B/A < 100
	Inte	rnal Spe	eed Setting	3 speeds may be set internally
	Pro	Protection		Overcurrent, overvoltage, low voltage, regeneration error, overload, main circuit detection error, heatsink
				overheat, power open phase, overflow, overspeed, encoder error, overrun, CPU error, parameter error, etc.
		.	r Functions for Supervision	Integrates analog monitor connectors for supervision of the speed and force reference signals, etc.
	Display			CHARGE, POWER, 7-segment LEDX 5 (Integrated digital operator function)
	Oth	ers		Reverse movement connection, zero point search, automatic servomotor ID and DC reactor
	Others			connection terminal for harmonic suppressions (except for SGDH-75AE-□)

Dimensional Diagrams of Base Mounted SERVOPACK Models

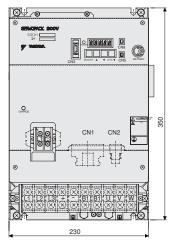
Units: mm

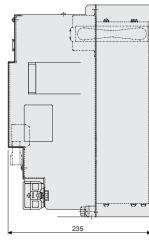

Single-Phase (200V)

SGDH-A5AE, SGDH-01AE, SGDH-02AE

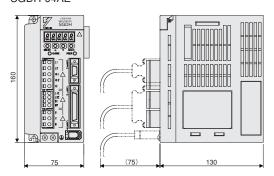


Three-Phase

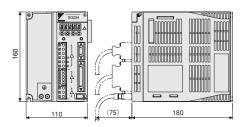

200V:SGDH-05AE~SGDH-10AE

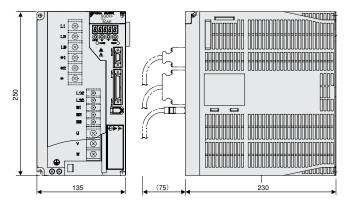


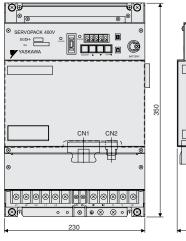
200V:SGDH-20AE, SGDH-30AE 400V:SGDH-20DE, SGDH-30DE

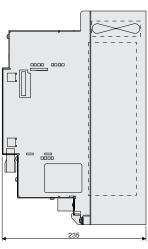


200V:SGDH-75AE

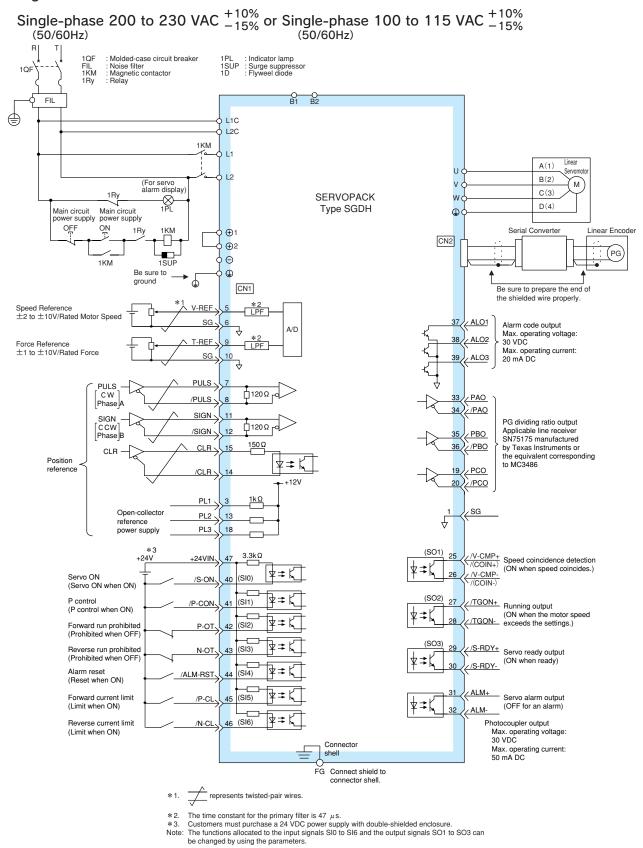



SGDH-04AE

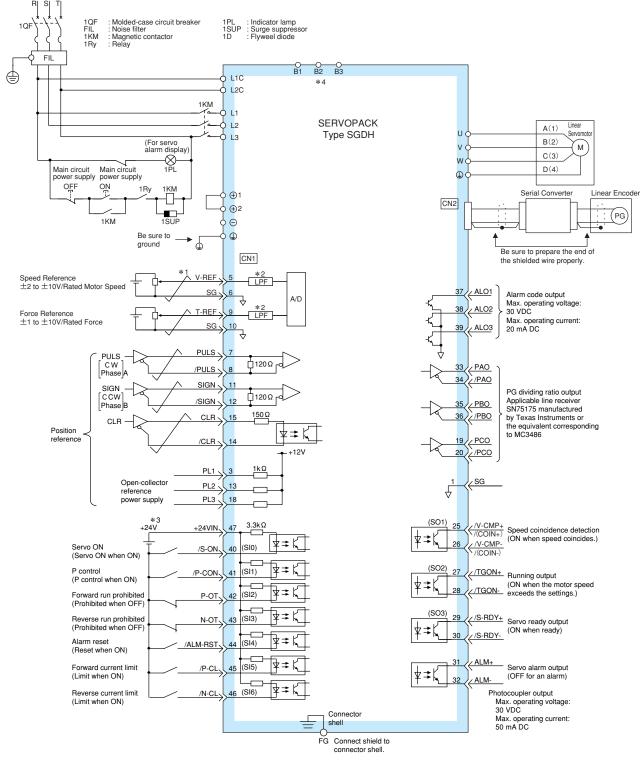

200V:SGDH-15AE 400V:SGDH-05DE~SGDH-15DE



200V:SGDH-50AE 400V:SGDH-50DE


400V:SGDH-75DE

Connection Diagram


Single-Phase

*****3.

Three-Phase

Three-phase 200 to 230 VAC $^{+10\%}_{-15\%}$ (50/60Hz)

represents twisted-pair wires.

be changed by using the parameters

*3.

The time constant for the primary filter is 47 $\,\mu$ s. Customers must purchase a 24 VDC power supply with double-shielded enclosure. When using SERVOPACK of 7.5kw connect an external regenerative resistor between B1 and B2.(B3 terminal is not provided)
The functions allocated to the input signals SI0 to SI6 and the output signals SO1 to SO3 can

Options

Serial Converter Unit (JZDP-D00□-□□□)

Characteristics and Specifications

		0 '6' ''
	Item	Specifications
	Power Supply Voltage	$+5.0$ VDC $\pm 5\%$ ripple content 5% max.
	Current Consumption *1	120mA Typ. 350mA max.
	Signal Resolution	Input 2-phase sine wave: 1/256 pitch
ics	Max. Response Frequency	250kHz
rist	Analog Input Signal*2	Differential input amplitude: 0.4 to 1.2V
cte	(Cos,Sin,Ref)	Input signal level: 1.5 to 3.5V
lara	Hall Sensor Inputs Signal	CMOS level
Electrical Characteristics	Output Signals*3	Position data, hall sensor information, and alarms
ical	Output Method	Serial data transmission
ctr		(HDLC (High-level Data Link Control)
E		protocol format with Manchester codes)
	Transmission Cycle	62.5 μs
	Output Circuit	Balanced transceiver (SN75LBC176 or the
		equivalent) Internal terminal resistance: 120 Ω
cal istics	Approx. Mass	150g
Mechanical Characteristics	Vibration Resistance	98m/s² max. (1 to 2500Hz) in 3 directions
Char	Shock Resistance	980m/s², (11ms) in 3 directions for 2 times
nent	Operating Temperature	0 to +55°C (32 to 131°F)
Environment	Storage Temperature	-20 to +80°C (-4 to 176°F)
Env	Humidity	20 to 90%RH (non-condensing)

- * 1 The current consumption of the linear scale and hall sensor is not included in this value.
 - The current consumption of linear scale and hall sensor must be taken into consideration for the current capacity of host controller that supplies the power. The current consumption of hall sensor:
- *2 Input a value within the specified range. Otherwise, incorrect position information is output, and the device may be damaged.
- *3 The transmission is enabled 100 to 300 ms after the power turns

Signal

cos input (A+) 0V

sin input (B+)

/Ref input (R-)

/cos input (A-)

/sin input (B-)

Ref input (R+)

0V sensor

5V sensor

Empty

Empty

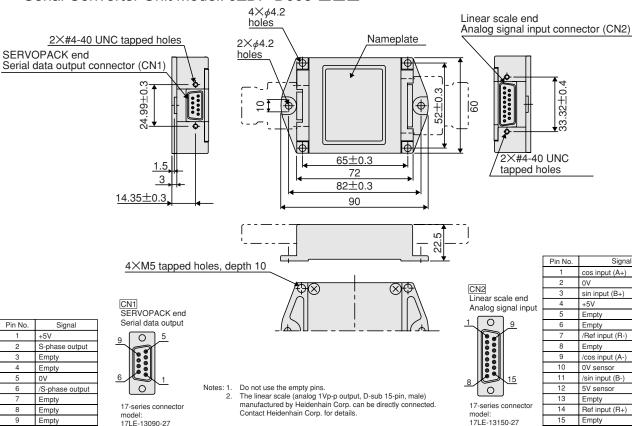
Shield

+5V

Empty

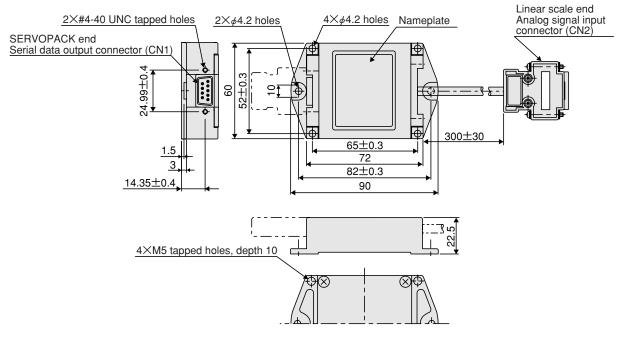
Empty

Empty


Dimensional Drawings Units: mm

17I F-13090-27

(socket) by DDK Ltd.


Linear Scale without Cable for Hall Sensor by Heidenhain

Serial Converter Unit Model: JZDP-D003-□□□

Shield

Linear Scale without Cable for Hall Sensor by Renishaw Serial Converter Unit Model: JZDP-D005-□□□

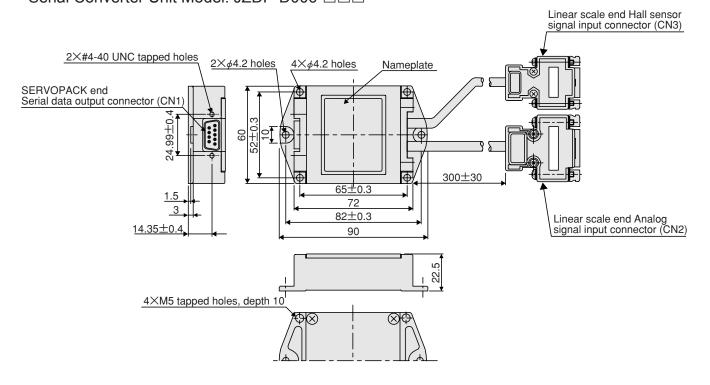
CN1 SERVOPACK end Serial data output

CN2 Linear scale end Analog signal input

17-series connector model: 17LE-13090-27 (socket) by DDK Ltd.

Pin No.	Signal
1	+5V
2	S-phase output
3	Empty
4	Empty
5	0V
6	/S-phase output
7	Empty
8	Empty
9	Empty
Caco	Chiold

SERVOPACK does not have the function to process Vq signals.

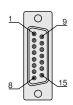

17-series connector model: 17LE-13150-27 (socket) by DDK Ltd.

Pin No.	Signal
1	/cos input (V1-)
2	/sin input (V2-)
3	Ref input (V0+)
4	+5V
5	5Vs
6	Empty
7	Empty
8	Empty
9	cos input (V1+)
10	sin input (V2+)
11	/Ref input (V0-)
12	OV
13	0Vs
14	Empty
15	Inner (0V)
Case	Shield

Notes: 1. Do not use empty pins.

- The linear scale (analog 1Vp-p output, D-sub 15-pin, male) by Renishaw Inc. can be directly connected. However, the BID and DIR signals are not connected.
 Use the linear scale end connector to change the zero point specifications of the linear scale.

Linear Scale with Cable for Hall Sensor by Heidenhain Serial Converter Unit Model: JZDP-D006-□□□


CN1 SERVOPACK end Serial data output

17-series connector model: 17JE-13090-27 (socket) by DDK. Ltd.

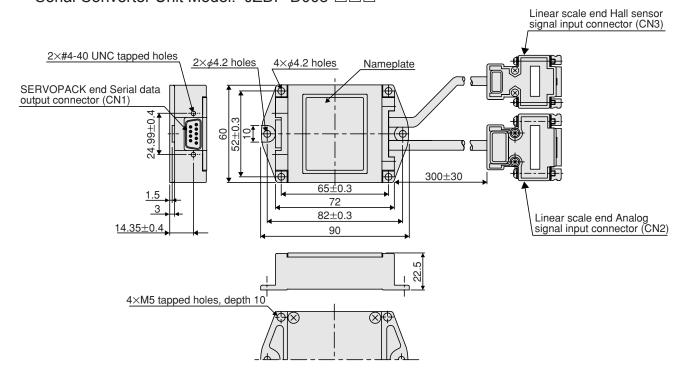
Pin No.	Signal
T III INO.	Signal
1	+5V
2	S-phase output
3	Empty
4	Empty
5	0V
6	/S-phase output
7	Empty
8	Empty
9	Empty
Case	Shield

CN2 Linear scale end Analog signal input

17-series connector model: 17JE-13150-02 (D8C)(socket) by DDK. Ltd.

Pin No.	Signal
1	cos input (A+)
2	0V
3	sin input (B+)
4	+5V
5	Empty
6	Empty
7	/Ref input (R-)
8	Empty
9	/cos input (A-)
10	0V sensor
11	/sin input (B-)
12	5V sensor
13	Empty
14	Ref input (R+)
15	Empty
Case	Shield

CN3 Linear scale end Hall sensor signal input

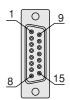


17-series connector model: 17JE-13090 by DDK. Ltd.

Pin No.	Signal
1	+5V
2	U-phase input
3	V-phase input
4	W-phase input
5	0V
6	Empty
7	Empty
8	Empty
9	Empty
Case	Shield

- Notes: 1. Do not use empty pins.
 2. The linear scale (analog 1Vp-p output, D-sub 15-pin, male) by Heidenhain Corp.
 - can be directly connected. 3. U-phase, V-phase, and W-phase input are internally pulled up at $10k\Omega$.

Linear Scale with Cable for Hall Sensor by Renishaw Serial Converter Unit Model: JZDP-D008-□□□


CN1 SERVOPACK end Serial data output

17-series connector model: 17JE-13090-27 (socket) by DDK. Ltd.

Pin No.	Signal
1	+5V
2	S-phase output
3	Empty
4	Empty
5	0V
6	/S-phase output
7	Empty
8	Empty
9	Empty
Case	Shield

CN2 Linear scale end Analog signal input

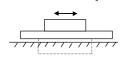
17-series connector model: 17JE-13150-02(D8C) (socket) by DDK. Ltd.

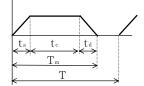
Pin No.	Signal
1	/cos input (V1-)
2	/sin input (V2-)
3	Ref input (V0+)
4	+5V
5	5Vs
6	Empty
7	Empty
8	Empty
9	cos input (V1+)
10	sin input (V2+)
11	/Ref input (V0-)
12	0V
13	0Vs
14	Empty
15	Inner
Case	Shield

CN3 Linear scale end Hall sensor signal input

17-series connector model: 17JE-13090 by DDK. Ltd.

Pin No.	Signal
1	+5V
2	U-phase input
3	V-phase input
4	W-phase input
5	0V
6	Empty
7	Empty
8	Empty
9	Empty
Case	Shield


- Notes: 1. Do not use empty pins.
 The linear scale (analog 1VP-P output, D-sub 15-pin, male) by Renishaw Inc. can be directly connected. However, the BID and DIR signals are not connected.
 U-phase, V-phase, and W-phase input are internally pulled up at 10kΩ.


Selecting Motor Force

Comparison with Rotary Motor

Rotary Motor		Linear Motor	
Drive Mechanism	$\begin{array}{c c} & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$	Drive Mechanism	$V_L(m/min)$ Workpiece mass $W_w(kg)$ Table mass $W_T(kg)$ Coil Assembly mass $W_M(kg)$ Friction coefficiency μ Mechanical efficiency η Acceleration $\alpha(m/s^2)$
Load Shaft Rotation Speed N∟ (r/min)	$\frac{1000 \times V_L}{P_B}$		
Motor Speed N _M (r/min)	R × N _L		
Inertia Converted into Load Shaft J1	$\left(W_{\scriptscriptstyle W}\!+\!W_{\scriptscriptstyle T}\right) \ \times \left(\frac{P_{\scriptscriptstyle B}}{1000\pi}\right)^{\!\!2} \times \frac{1}{4}$		
Inertia Converted into Motor Shaft J.	$J_1 \times \left(\frac{1}{R}\right)^2$		
Drive Torque by Load Shaft T ₁ (N•m)	$\mu \times (W_W + W_T) \times 9.8 \times \left(\frac{P_B}{2000 \pi}\right)$	Normal Force	$\frac{\mu \times (W_{\text{W}} + W_{\text{T}} + W_{\text{M}}) \times 9.8}{n}$
Connected Motor Shaft $T_{L}(N \cdot m)$	$T_1 \times \frac{1}{R} \times \frac{1}{\eta}$	FL(IN)	η
Running Power $P_{\circ}(W)$	$\frac{T_{\text{\tiny L}} \times 2 \times \pi \times N_{\text{\tiny M}}}{60}$	Running Power Po(W)	$\frac{F_{L} \times V_{L}}{60}$
Accel Torque T _P (N•m)	$T_{P} = \frac{(J_{L} + J_{M}) \times 2 \times \pi \times N_{M}}{60 \times t_{a}} + T_{L}$	Accel Force F _P (N)	$F_{\text{P}}\text{= }(W_{\text{W}}\text{+}W_{\text{T}}\text{+}W_{\text{M}})\times_{\alpha}\text{+}F_{\text{L}}$
Decel Torque T _s (N•m)	$T_{s} = \frac{(J_{L} + J_{M}) \times 2 \times \pi \times N_{M}}{60 \times t_{d}} - T_{L}$	Decel Force F _s (N)	$F_{S} = (W_{W} + W_{T} + W_{M}) \times \alpha - F_{L}$
Required Torque T _{rms} (N•m)	$T_{rms} = \sqrt{\frac{T_{P}^2 \times t_a + T_{L}^2 \times t_c + T_{S}^2 \times t_d}{T}}$	Required Force F _{rms} (N)	$F_{rms} = \sqrt{\frac{F_{P^2} \times t_a + F_{L^2} \times t_c + F_{S^2} \times t_d}{T}}$
	T_{P} T_{L} t_{a} t_{c} T_{S}		F_{L} T T T T T T T
		Estimated Winding Temperature $\theta_{\text{C}}(^{\circ}\text{C})$	$\theta c = (Frms/Km)^2 \times Rth + \theta$

Selection Example

· Temporary Selection

①Normal load force= $0.2 \times (1+2) 9.8 = 5.88 (N)$

②Load accel force= $(1+2) \times 120 / 60 / 0.02 + 5.88 = 306 (N)$

From ②, select SGLGW-40A365A whose peak force is 420N

Specifications of SGLGW-40A365A

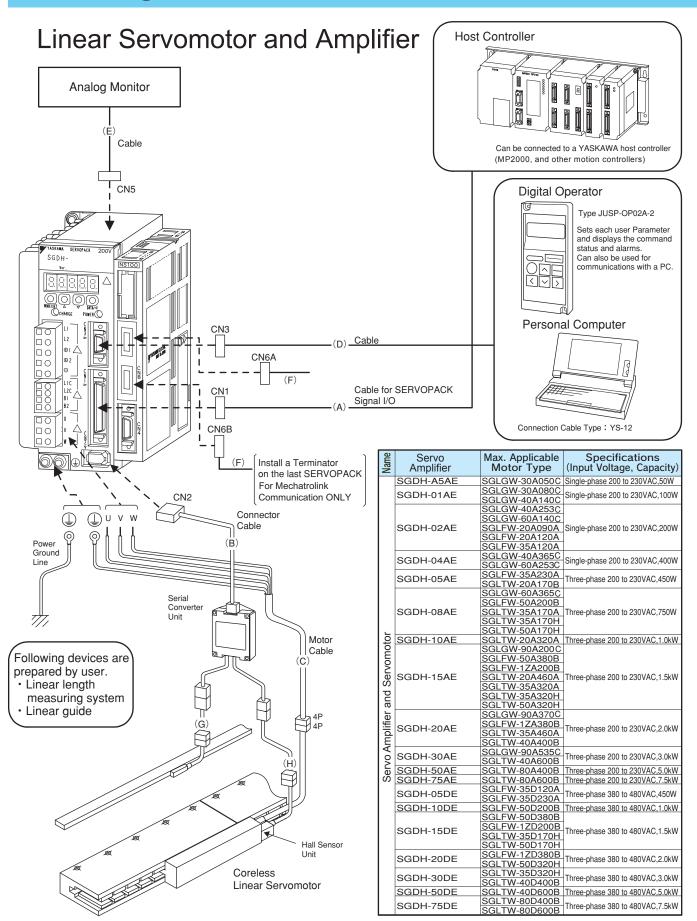
Continuous force : 140N Peak force: 420N Moving coil mass: 0.91kg Motor constant: 13.5 (N/√W)

· Servomotor Checking

Thermal resistance: 0.65(K/W)

(Ambient temperature (θ): 25°C)

3Normal force=0.2 \times (1+2+0.91) \times 9.8/0.9=8.5 (N)


4Accel force = $(1+2+0.91) \times 120 / 60 / 0.02 + 8.5 = 400 (N) < Peak force (applicable)$

⑤ Decel force= $(1+2+0.91) \times 120/60/0.02-8.5=383$ (N) < Peak force (applicable)

© Required force = $\sqrt{\frac{400^2 \times 0.02 + 8.5^2 \times 0.36 + 383^2 \times 0.02}{0.5}} = 111 \text{ (N)} < \text{Rated force (applicable)}$

②Estimated winding temperature: $(111/13.5)^2 \times 0.65 + 25 = 69(^{\circ}\text{C}) < 130(^{\circ}\text{C})$ (applicable)

Ordering Reference

Options

Name		Туре	Specifications	
Digital Operator	Digital Operator	JUSP-OP02A-2	With connection cable(1m)	
	Cable	JZSP-CMS00-1	1m Required only when using JUSP-OP02A-1,	
		JZSP-CMS00-2	1.5m the digital operator for Σ Series.	
		JZSP-CMS00-3	2m	
Recommended Noise Filter		FN2070-6/07	Single-phase 250 VAC,6A	
		FN2070-10/07	Single-phase 250 VAC,10A	
		FN258L-7/07	Three-phase 480 VAC,7A	
		FN258L-16/07	Three-phase 480 VAC,16A	
		FN258L-30/07	Three-phase 480 VAC,30A	
(Schaffner P/Ns)	FMAC-0934-5010	Three-phase 440 VAC,50A		
		FMAC-0953-6410	Three-phase 440 VAC,64A	
	FN258L-7/07	Three-phase 480 VAC,7A		
		FN258L-16/07	Three-phase 480 VAC,16A	
		FS5559-35-33	Three-phase 480 VAC,35A	

Cables and Connectors

Name		Туре	Specifications
(A)	Connector Terminal Conversion Unit	JUSP-WA50P-D50	Terminal block and connection cable 0.5m
CN1 Connector for I/O Signals	Cable with connector on Servo Amp Side only	JZSP-CK101-1 JZSP-CK101-2 JZSP-CK101-3	1m 2m 3m
J	Connector Kit (for CN1)	JZSP-CK19	50-Pin Connector (no cable)
(B) CN2 \$\frac{1}{2}\$ Serial Converter Unit	Cable with Connectors on Both Ends	JZSP-CLP70-10 JZSP-CLP70-15 JZSP-CLP70-20	1m 3m 5m 10m 15m 20m
Servo Amp Terminal Motor	Motor Cable (for Main Circuit)	JZSP-CLN11-01 (1m) JZSP-CLN11-03 (3m) JZSP-CLN11-05 (5m) JZSP-CLN11-10 (10m) JZSP-CLN11-15 (15m) JZSP-CLN11-20 (20m) JZSP-CLN21-01 (1m) JZSP-CLN21-03 (3m) JZSP-CLN21-05 (5m) JZSP-CLN21-10 (10m) JZSP-CLN21-15 (15m) JZSP-CLN21-15 (15m) JZSP-CLN21-20 (20m) JZSP-CLN39-01 (1m) JZSP-CLN39-03 (3m) JZSP-CLN39-05 (5m) JZSP-CLN39-10 (10m) JZSP-CLN39-10 (10m) JZSP-CLN39-10 (10m) JZSP-CLN39-15 (15m) JZSP-CLN39-20 (20m)	Applicable linear Servomotor type SGLGW-30 SGLGW-60 SGLFW-20 SGLFW-35 Applicable linear Servomotor type SGLGW-90 SGLFW-50 SGLFW-1Z SGLTW-20 SGLTW-20 SGLTW-20 SGLTW-35 (not applicable to H type) SGLTW-50 (not applicable to H type) Applicable linear Servomotor type SGLTW-40 SGLTW-40 SGLTW-80

Name		Туре	Specifications	
(D) CN3	Cable for	_	Attached to digital operator (JUSP-OP02A-2)	
1	Digital Operator		, ,	
Setting Device	Cable for PC	YS-12	2m D-SUB 9-pin	
(E) CN5	Cable for	JZSP-CA01 or DE9404559	1m	
CNS	Analog Monitor	3231 - 0A01 01 DE3404333		
(F)	Cable for MECHATROLINK	JEPMC-W6000-A3	0.3m	
CN6A	Communication	JEPMC-W6000-A5	0.5m With connectors on both ends	
CNOA		JEPMC-W6000-01	1.0m	
CN6B	Terminator for MECHATROLINK	JEPMC-W6020		
	Communication	JEF 1010-00020		
(G)		JZSP-CLL00-01	1m D-SUB 15-pin	
Serial Converter Unit	Special Cable	JZSP-CLL00-03	3m D-SUB 15-pin	
1	for Renishaw Linear	JZSP-CLL00-05	5m D-SUB 15-pin	
Linear Encoder	Encoders	JZSP-CLL00-10	10m J D-SUB 15-pin	
		JZSP-CLL00-15	15m D-SUB 15-pin	
(H)		JZSP-CLL10-01	1m	
Serial Converter Unit	Special Cable	JZSP-CLL10-03	3m	
1	for Hall Sensor	JZSP-CLL10-05	5m	
Hall Šensor	TOT TIALI GETISOT	JZSP-CLL10-10	10m	
		JZSP-CLL10-15	15m	

YASKAWA ELECTRIC AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone: (847) 887-7000 Fax: (847) 887-7310 Internet: http://www.yaskawa.com

MOTOMAN INC.

805 Liberty Lane, West Carrollton, OH 45449, U.S.A.

Phone: (937) 847-6200 Fax: (937) 847-6277 Internet: http://www.motoman.com

YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.

Avenida Fagundes Filho, 620 Bairro Saude Sao Paolo-SP, Brasil CEP: 04304-000 Phone: 55-11-5071-2552 Fax: 55-11-5581-8795 Internet: http://www.yaskawa.com.br

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: 81-3-5402-4511 Fax: 81-3-5402-4580 Internet: http://www.yaskawa.co.jp

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.

No. 18 Xizang Zhong Road, Room 1805, Harbour Ring Plaza, Shanghai 2000001, P.R. China Phone: 86-21-5385-2200 Fax: 86-21-5385-3299

BEIJING OFFICE

Room 1011A, Tower W3 Oriental Plaza, No. 1 East Chang An Ave.

Dong Cheng District, Beijing 100738, P.R. China Phone: 86-10-8518-1862 Fax: 86-10-8518-1863

SHANGHAI OFFICE

No. 18 Xizang Zhong Road, Room 1302, Harbour Ring Plaza, Shanghai 2000001, P.R. China

Phone: 86-21-5385-2370 Fax: 86-21-5385-2375

SHANGHAI YASKAWA-TONJI M & E CO., LTD.

No. 27 Hui He Road Shanghai 200437, P.R. China Phone: 86-21-6553-6060 Fax: 86-21-5588-1190

SHOUGANG MOTOMAN ROBOT CO., LTD.

No. 7, Yongchang-North Road, Beijing Economic & Technological Area,

Beijing 100076 P.R. China

Phone: 86-10-6788-0551 Fax: 86-10-6788-2878

YASKAWA ELECTRIC KOREA CORPORATION

7F Doore Bldg 24, Yeoido-dong, Youngdungpo-ku, Seoul 150-877, Korea Phone: 82-2-784-7844 Fax: 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-01, New Tech Park 556741, Singapore

Phone: 65-6282-3003 Fax: 65-6289-3003

TAIPEI OFFICE (AND YATEC ENGINEERING CORPORATION)

9F, 16, Nanking È. Rd., Sec. 3, Taipei, Taiwan Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan

Phone: 886-2-2502-5003 Fax: 886-2-2505-1280

YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2, 65824 Schwalbach, Germany

Phone: 49-6196-569-300 Fax: 49-6196-569-312 Internet: http://www.yaskawa.de

MOTOMAN ROBOTEC GmbH

Kammerfeldstrasse 1, 85391 Allershausen, Germany

Phone: 49-8166-90-100 Fax: 49-8166-90-103

YASKAWA ELECTRIC UK LTD.

1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom

Phone: 44-1236-735000 Fax: 44-1236-458182

MOTOMAN ROBOTICS EUROPE AB

Franks Vagen 10 SE-390 04, Kalmar, Sweden Phone: 46-480-417800 Fax: 46-486-417999