
Acontis Stack PowerPMAC setups

V1.8

November 24, 2017

Davis Gentry

This document is intended to allow an engineer who has basic familiarity with the PowerPMAC and with Sysmac Studio

to commission a PowerPMAC using an EtherCAT network using the Acontis EtherCAT stack. At the time of writing the

Acontis stack is used in two Omron PowerPMAC products – the µPowerPMAC (CK3E series motion controllers) and the

PowerPMAC IPC (NY512-A600 series IPC with motion control). In this document the term ‘PowerPMAC’ will be used

generically to refer to any Omron Delta Tau motion controllers using the Acontis stack.

Note: one powerful method of troubleshooting is to connect a micro USB cable to the diagnostics port on the

PowerPMAC (beside the power connector on the CK3E). The PC will detect it as a serial port - COM27 on my PC.

Connect using the software tool PuTTy, serial type, 115200 baud. Default settings with the configuration shown will

work:

Once it starts, press the PC enter key once, log in with ID: root, Password: deltatau

Step 1

Install the latest PowerPMAC IDE. As a part of that EC Engineer will be installed – this is the software needed to set up

the Acontis stack.

Open the PowerPMAC IDE and connect to the PowerPMAC from your computer. I suggest opening a Watch window

and adding ECAT[0].Enable and ECAT[0].MasterState. Make sure that ECAT[0].Enable=0 before making any changes to

the EtherCAT configuration (can be changed in the Terminal window if connected). Once the EtherCAT configuration is

set and downloaded to the PowerPMAC, and a ‘save’ (write working memory to permanent memory) and ‘$$$’ (reset)

has been done ECAT[0].MasterState should be greater than 0. 1, 2, or 8 are acceptable values. After setting

ECAT[0].Enable = 1 from the terminal window (or code) there will be a brief delay, then you will see ECAT[0].Enable=1 in

the Watch window. If there are any errors, or if the network is incorrectly set up, then ECAT[0].Enable will immediately

reset to zero after you set it to one. This typically means that something about the EtherCAT configuration in the

PowerPMAC does not match the configuration in the EtherCAT network. It could be the clocks, the network order, or

anything that causes an EtherCAT error.

Step 2

Connect the slave(s) to the EtherCAT network and power the slave(s) and the PowerPMAC.

At this point issuing the ‘ecat slaves’ (ECAT[0].enable can equal 0 or 1 and still see the same response) from the terminal

window should show everything on the network. Vendor IDs and Product Codes are shown under the hardware

sections.

EC Engineer

Make sure that you have added the Omron ESI files – the best way is to go to the ESI Manager from the File menu item

in EC Engineer. Click the ‘Add Folder’ button at the bottom.

 Navigate to C:\Program Files (x86)\OMRON\Sysmac Studio\IODeviceProfiles\EsiFiles and choose the SystemEsiFiles

directory.

It may tell you that one or more ESI files already exist and ask if you want to add them. Say yes. It may have errors in

some of the ESI files – for example the Omron E3NW-ECT.xml file cannot be read at the date of writing. If you have

added several items by hand it may be easier to delete all and start from scratch. When finished you should have all of

the Omron devices:

With the PowerPMAC and the EtherCAT devices connected and powered open EC Engineer and choose EtherCAT Master

Unit (Delta Tau).

Click on the Class-A-Master in the Project Explorer (upper left pane) and set your network cycle time in microseconds –

note that the example below is set to 500 usec, or 2000 Hz. This should match the value in Sys.ServoPeriod in the Power

PMAC – if Sys.ServoPeriod = 0.5, then cycle time should by 500 usec. Also set the IP address of your PowerPMAC – note

that 192.168.1.200 is the default address for the PowerPMAC. Then click the ‘Select’ button to the right of the ‘Master-

Instance’ block in the ‘Slaves connected to remote system section’.

Add a line to the Global Definitions.pmh file to set the servo (and EtherCAT) frequency. This must match the value used

in EC Engineer. This will look like:

Sys.ServoPeriod=0.5 //2 kHz 1.0 //1kHz

Remember to add a startup PLC (see appendix D) when done.

On ALL devices it is best to set the Check Identification on the Advanced Options tab. This forces it to check to make

sure that the node is in the correct position on the network.

Some gotchas:

1) Make sure that the node address switches are set. For best results be sure that the nodes number from 1 up,

with node 1 providing the clock and being the first node in the physical network.

2) Node 1 should always be set up as a Potential Reference Clock.

Step 3

Set up your various hardware as in the next sections.

1S and G5 Drives

If the drive has previously been connected to a controller do an initialization (see appendix A). You will also need to do

this before changing EtherCAT update frequencies. Using Sysmac Studio, set any desired parameters in the drive

(Appendix B). You will probably need to change the Communications error counts (either 0 or f). Set the desired nodes

using the rotary switches on the drive. Note that the motor setup utility in the PowerPMAC IDE gives unreliable setup

parameters in some cases – easiest to set everything manually. Example settings are given in this document.

The ‘ecat slaves’ command with a 100 W 100V 1S drive will show Omron VID = $83 (0x83), and PC = $AB (0xAB).

The Cyclic Position mode will get your drives running well, with the only caveat being that they must be tuned in the

drive rather than the PowerPMAC. If the application requires very tight coordination of multiple axes during the moves

you may want to increase the servo frequency and go to Cyclic Torque control. This will be covered after Cyclic Position

setup.

Open EC Engineer and scan the network (Appendix C). Click on the drive (Slave_001 in this example), then click on the

Advanced Options tab in the Device Editor pane. Make sure that Potential Reference Clock is checked in the Distributed

Clocks settings.

Click on the Distributed Clock tab in the Device Editor pane. You should see that the Sync Unit Cycle (us) is the same as

the Master cycle time set prior to the scan. Check the Overwrite Mode box. Under Sync Unit 0 set the Cycle Time to

User Defined and make sure that it matches the Sync Unit Cycle (us), then set the Shift Time (us) to 125.00.

Click on the PDO Mapping in the Device Editor pane. See note 1.

If you are using Cyclic Position mode, no EtherCAT safety, and do not need any data not included in the 258 PDOs, make

no changes here. If you plan to use EtherCAT Safety and already have the safety controller set up, add the 273 PDO

mappings. The 258 PDO mappings include:

If planning to use Cyclic Torque or Cyclic Velocity control I suggest leaving the 259 transmit PDO mapping, deselecting

the 258th receive PDO mapping, and selecting the 261th receive PDO Mapping.

The default is synchronous position mode. If not using synchronous position mode, go to the Init Commands tab, and

set the x6060 parameter to according to:

8 = Cyclic synchronous position mode (csp)
9 = Cyclic synchronous velocity mode (csv)
10 = Cyclic synchronous torque mode (cst)

Use System Setup tool (after enabling Ecat[0].Enable=1) to set the motor up. Choose Amplifier 131xxxx, ID $AB. If

cannot get enable to stay on once set up, set Motor[x].EcatAmpFaultLimit to 500 or above. If system setup is giving

problems try closing the IDE and restarting it. If you have used this drive before, especially with NX Safety, you may

need to hook up THROUGH an NJ using EtherCAT and Sysmac Studio and initialize, build new project, and enable the

drive once before you can get the 87 (ESTO) error to clear and / or the motor to enable.

This assumes that the EtherCAT header file created from the EC Engineer xml file looks something like (sample is 261

receive PDO mapping):

#define Slave_0_6040_0_Controlword ECAT[0].IO[0].Data

#define Slave_0_607A_0_Targetposition ECAT[0].IO[1].Data

#define Slave_0_60FF_0_Targetvelocity ECAT[0].IO[2].Data

#define Slave_0_6071_0_Targettorque ECAT[0].IO[3].Data

#define Slave_0_6060_0_Modesofoperation ECAT[0].IO[4].Data

#define Slave_0_60B8_0_Touchprobefunctio ECAT[0].IO[5].Data

#define Slave_0_607F_0_Maxprofilevelocit ECAT[0].IO[6].Data

#define Slave_0_603F_0_Errorcode ECAT[0].IO[4096].Data

#define Slave_0_6041_0_Statusword ECAT[0].IO[4097].Data

#define Slave_0_6064_0_Positionactualval ECAT[0].IO[4098].Data

#define Slave_0_6077_0_Torqueactualvalue ECAT[0].IO[4099].Data

#define Slave_0_6061_0_Modesofoperationd ECAT[0].IO[4100].Data

#define Slave_0_60B9_0_Touchprobestatus ECAT[0].IO[4101].Data

#define Slave_0_60BA_0_Touchprobepos1pos ECAT[0].IO[4102].Data

#define Slave_0_60BC_0_Touchprobepos2pos ECAT[0].IO[4103].Data

#define Slave_0_60FD_0_Digitalinputs ECAT[0].IO[4104].Data

When using the 261 receive PDO mapping you will need to set a few variables in order to run your motors. Assuming

the mapping above, add the following to your startup PLC (or in operational PLC for dynamic changes):

//Set up for torque control
Slave_0_607F_0_Maxprofilevelocit=838860000; //6000 rpm units are cts/ms 419430000; //3000 rpm units
are cts/ms max velocity
Slave_0_60E0_0_Positivetorquelim=3000; //300% positive torque limit
Slave_0_60E1_0_Negativetorquelim=3000; //300% negative torque limit
Slave_0_6060_0_Modesofoperation=10; //set for torque mode

/*Mode of Operation value Description
0 Not specified
1 Profile position mode (pp)
3 Profile velocity mode (pv)
6 Homing mode (hm)
8 Cyclic synchronous position mode (csp)
9 Cyclic synchronous velocity mode (csv)
10 Cyclic synchronous torque mode (cst)
*/

Note that once you have these basics done, you can use the Setup tool to set the motor up, and the Tuning

tool to tune it once the setup is done. Note that everything shown here is using motor units of counts.

Some variables to set after the initial motor setup is done are:

Motor[1].JogTa=- -0.002 //0.002 ms^2/ct

Motor[1].JogTs= -0.0005 //0.0005 ms^3/ct
Motor[1].AbortTs=25

Motor[1].MaxSpeed=400000

Motor[1].JogSpeed=280000

One potential gotcha – there is a one cycle delay after enabling the motor – so if the motor is not enabled before telling

it to move you may get a fatal following error. Best way to fix this is to enable your motors at the start of operation,

wait a couple of milliseconds, then start your moves. If the motor is ever killed, repeat this.

Some PowerPMAC variables for a 1S (with a demo motor) sitting at the first node and setup on Motor[1] are:

//Motor 1 – note this setting is for PDO map 259 target position

Motor[1].Ctrl=Sys.PosCtrl // Sys.ServoCtrl for torque control

Motor[1].pDac=ECAT[0].IO[1].Data.a //ECAT[0].IO[3].Data for torque control

Motor[1].MaxDac=3000 //300%

Motor[1].JogTa=- -0.002

Motor[1].JogTs= -0.0005
Motor[1].AbortTs=25

Motor[1].MaxSpeed=400000

Motor[1].JogSpeed=280000

Motor[1].pEnc2=EncTable[32].a

Motor[1].AmpEnableBit=0

Motor[1].LimitBits=64

Motor[1].pAmpEnable=ECAT[0].IO[0].Data.a

Motor[1].pAmpFault=ECAT[0].IO[4097].Data.a

Motor[1].pLimits=ECAT[0].IO[4104].Data.a

Motor[1].AmpFaultBit=3

Motor[1].pEnc=EncTable[32].a

motor[1].FatalFeLimit=8000000

Motor[1].Control[0]=$10000f00

Motor[1].Control[1]=$0

EncTable[32].type=1

EncTable[32].index1=0

EncTable[32].index2=0

EncTable[32].index3=0

EncTable[32].index4=0

EncTable[32].index5=0

EncTable[32].pEnc1=Sys.pushm

EncTable[32].pEnc=ECAT[0].IO[4098].Data.a

EncTable[32].MaxDelta=0

EncTable[32].ScaleFactor=1

EncTable[32].index6=0

NX I/O

NOTE: Major caveat – using the revision 1.5 NX-ECC203 EtherCAT coupler:
This version of the NX-ECC203 card can only have ONE (total) of any of the following cards in the rack, and that one card

must be in slot 1: position interface units, safety CPUs. When using these cards (and also any safety i/o cards) It must

also be put in distributed clock more – NOT free run.

Note: ECC201 and ECC202 support only Free Run mode. To use with synchronized clocks MUST have an ECC203. Must

use with synchronized clocks in order to use NX i/o to input motor feedback or to do motor control. Apply power and

open Sysmac Studio. Going to the Configurations and Setup section double click on the EtherCAT sub section. If not

already present, drag the NX-ECC20x which you are using into the EtherCAT network and drop it. In the example below I

am using an older revision coupler, so I checked the ‘Show all versions’ box in the toolbox to see the Rev 1.1.

Connect to the NX coupler using a USB cable, and disconnect the EtherCAT cable. Right click on the NX node and select

Coupler Connection (USB)-> Online. Double click on the NX node to open the NX configuration page.

Right click on the coupler in the node tab and choose ‘clear all memory’. Accept clearing coupler and all modules.

Depending on modules attached this may take a couple of minutes to complete. Right click on the NX node and select

Coupler Connection (USB)-> Offline. Cycle power on the unit. When this completes, right click on the NX node and

select Coupler Connection (USB)-> Online. Right click on the coupler in the node tab and choose ‘Compare and Merge

with Actual Unit Configuration’. A window with the existing modules should pop up.

Click the ‘Apply Actual Unit Configuration’ button in the middle. Everything should match now.

Click the ‘OK’ button.

Now you can click on the various modules in the Node tab and select ‘Edit Unit Operation Settings’ for modules as

needed. When finished editing for each module be sure to press the ‘Transfer to Unit’ button.

 One important Analog Input module note – if you do not have inputs connected you must disable the input to avoid

faults.

When all modules are configured, right click on the NX node and select Coupler Connection (USB)->Transfer to Coupler.

Select the ‘Configuration information + Unit operations settings + Unit application data’ in the popup.

If you have a safety controller you may now select the new_SafetyCPU in the Multiview Explorer pane and configure and

program it.

When done with the SafetyCPU (if any) go back to the controller, right click on the NX node and select Coupler

Connection (USB)-> Offline. Power down, disconnect the USB cable, connect the EtherCAT cable(s), and power up

again.

The ‘ecat slaves’ command with a NX-ECC201 EtherCAT coupler will show Omron VID as $83 (0x83) and PC as $83 (0x83).

Open EC Engineer and scan the network (Appendix C). Click on the NX coupler (Slave_001 in this example) and open the

subsections to see the modules.

You should now see all the modules on the NX coupler. If the modules are not there and you try to start up using the

configuration PuTTy will show the following error (on node 6) when you try to set Ecat[0].Enable=1:

If this happens go back to EC-Engineer and press the Load Modules button in the Device Editor pane:

Click on the NX slave in the Project Explorer pane.

Click on the ‘Modules’ tab in the Device Editor pane. You should see all of the correct modules.

Click on the ‘PDO Mapping’ tab in the Device Editor pane. Select the appropriate Input and Output PDOs for your

modules. By default all of the correct PDOs are already selected. See note 1.

Click on the ‘Modules’ tab in the Device Editor pane. You should see all of the variables transmitted for each PDO

selected. If any data here is wrong you will need to check your ESI file

 Click on the ‘Advanced Options’ tab in the Device Editor pane. If you have a drive in the network, or are using the

ECC201 coupler, make sure that Potential Reference Clock is NOT checked in the Distributed Clocks settings.

Click on the ‘Distributed Clock’ tab in the Device Editor pane. Set the Operation Mode to ‘Free Run’.

The EtherCAT header file created from the EC Engineer xml file looks like:

#define Slave_0_7001_1_OutputBit8bits pshm->ECAT[0].IO[0].Data

#define Slave_0_7040_1_Ch1AnalogOutputVa pshm->ECAT[0].IO[1].Data

#define Slave_0_7040_2_Ch2AnalogOutputVa pshm->ECAT[0].IO[2].Data

#define Slave_0_7088_1_Ch1PulsePeriodMea pshm->ECAT[0].IO[3].Data

#define Slave_0_7084_1_Ch1LatchFunction pshm->ECAT[0].IO[4].Data

#define Slave_0_3003_4_NXUnitRegistratio(x) pshm->ECAT[0].IOBuffer[0 + x]

#define Slave_0_3006_4_NXUnitIODataActiv(x) pshm->ECAT[0].IOBuffer[17 + x]

#define Slave_0_2002_1_SysmacErrorStatus pshm->ECAT[0].IO[4098].Data

#define Slave_0_6020_1_Ch1AnalogInputVal pshm->ECAT[0].IO[4099].Data

#define Slave_0_6020_2_Ch2AnalogInputVal pshm->ECAT[0].IO[4100].Data

#define Slave_0_6060_1_Ch1AnalogInputVal pshm->ECAT[0].IO[4101].Data

#define Slave_0_6060_2_Ch2AnalogInputVal pshm->ECAT[0].IO[4102].Data

#define Slave_0_6060_3_Ch3AnalogInputVal pshm->ECAT[0].IO[4103].Data

#define Slave_0_6060_4_Ch4AnalogInputVal pshm->ECAT[0].IO[4104].Data

#define Slave_0_6080_1_Ch1EncoderCounter pshm->ECAT[0].IO[4105].Data

#define Slave_0_6081_1_Ch1ResetExternalI pshm->ECAT[0].IO[4106].Data

#define Slave_0_6082_1_Ch1EncoderPresent pshm->ECAT[0].IO[4107].Data

#define Slave_0_6088_1_Ch1PulsePeriodMea pshm->ECAT[0].IO[4108].Data

#define Slave_0_6084_1_Ch1LatchStatus pshm->ECAT[0].IO[4109].Data

#define Slave_0_6085_1_Ch1LatchInput1Dat pshm->ECAT[0].IO[4110].Data

#define Slave_0_6086_1_Ch1LatchInput2Dat pshm->ECAT[0].IO[4111].Data

NX Safety

In Sysmac Studio go to the Safety CPU, then the Global Variables (Programming->Data->Global Variables). Define any

desired variables to exchange between the NX Safety Controller and the PowerPMAC. Major note: At this time DO not

use BOOLs – use INTs for data transferred between the NX Safety CPU and the PowerPMAC.

In the I/O Map section (Configurations and Setup->I/O Map) build any hardware variables necessary for the application.

Program the Safety Controller as desired. Note that this document will not go into safety programming or general use of

the NX Safety Controller. Note that the program shown here is NOT a valid safety program – it will run and will operate

the safety output based on input from the PowerPMAC, but is NOT meant to be used in a safety system.

Validate the safety program, return to RUN mode, then go back to the NX controller side, save, build, and download to

the controller. Afterwards cycle power on the entire system.

When all is done here, go to the Controller section in Sysmac Studio, double click on the EtherCAT section, then right

click on the Master and select ‘Export All Couplers’ I/O Allocations’. Keep track of where you put the file created. Go to

that directory in Windows Explorer and Extract All from the zip file. Open the CouplerMemoryMap.xml using Internet

Explorer. It is very important that the Offsets seen here match those in later steps.

In EC Engineer select the safety controller, then click the Variables tab.

Click ‘New’. Add an ARRAY[0..1] of BYTE from SL300

Input Data Set 1, checking the ‘Combine’ box, Count=3. Add a UINT from SL3300 Input Data Set 2, using a Count of 1.

Add an Array[0..1] of BYTE from SL3300 Input Data Set 2, using a count of 4. Add an ARRAY[0..1] of BYTE from SL300

Output Data Set 1, checking the ‘Combine’ box, Count=3. Add an Array[0..1] of BYTE from SL3300 Output Data Set 2,

using a count of 2. The variables shown will initially be xxxxData Set y.Variable n. You can click on each variable, then

click ‘Edit’ and rename the variable. Note: if have odd number in array size of BYTEs, can use type USINT, count = size of

array, and check ‘combine’. Here is final result:

Do the same exercise for any other safety I/O modules in the rack. My rack has only one SOH200, and the variable list

for that is auto created, looking like:

NOTE: If you have added your own safety variables of type BOOL for the Safety Controller the autogenerated offsets

may be wrong. Check the offsets to make sure they match those from the Sysmac Studio generated file. If not you will

have to delete these variables and create new ones – you may have to change to an INT type.

Click on the Master in the Project Explorer, then the Slave to Slave tab. You will need to associate the Safety I/O slices

with the Safety CPU. The Safety CPU Input Data Set 1 needs to be associated with EACH of the Safety I/O card’s Output

Data Set 1. The Safety CPU Output Data Set 1 needs to be associated with EACH of the Safety I/O card’s Input Data Set

1. This is done by clicking on the Input Data Set in question in the left pane, then clicking on the Output Data Set in

question in the right pane, then clicking on the ‘>>’ between the panes. For one SOH200 it should look like this at the

end:

NX Safety – Local Rack safety I/O only

See above for example.

NX Safety – Local Rack safety I/O plus one 1S drive

Use normal setup for the NX rack, including the safety above. Use normal setup for the 1S, but include the

273 transmit and receive PDOs in the PDO mapping (EC Engineer). When adding the variables for the Safety

CPU you need to add variables for the 273 Transmit and Receive PDOs. The memory used for each drive will

be divided by:

The drive is Node 2, and the CouplerMemoryMap.xml for this particular section looks like - Input data set:

Output data set:

Note that Dataset 2 in this example contains communications variables for use with the PowerPMAC, and that

I have renamed the variables from default to give a logical description. So for a NX rack with one SL3300, one

SOH200, and one 1S drive the Safety CPU input variables will look like:

And output variables will look like:

 When setting the Slave to Slave mapping in EC engineer under the Class-A Master, set the NX mappings as

above, then include the mapping of the NX Safety CPU to the 1S drive(s).

*Note 1: You can check the PDO mappings for the various pieces of EtherCAT hardware by going into Sysmac Studio

and comparing them. The PDO mapping of the same number should have the same variables with the same type.

Step 4

Once all the Slaves are set up (including at a minimum PDOs and clocks), choose the ‘Save’ option from the File menu

item at the upper left of the EC Engineer window. Save the file where desired. Then click the ‘Export ENI’ button in the

upper section of the EC Engineer window. Note where this file is being saved and give it a name with no spaces in the

name. From the PowerPMAC IDE make certain that ECAT[0].Enable=0 – otherwise any attempt to complete the next

steps will fail, but may not show an error.

Step 5

From the PowerPMAC IDE choose ‘System Setup’ under the ‘Tools’ menu item. Click on the PowerPMAC object in the

upper left corner of the System Setup window. Select the same servo frequency that was used in EC Engineer, and click

‘Accept’. Here we are using 2 kHz:

Click on the ‘Master[0] Deactivated’ object in the left pane of the System Setup window. Now click the ‘Browse’ button

in the center pane. Navigate to the XML file created by EC Engineer, click on it, and click ‘OK’.

Now click the ‘Download ENI File’ button in the center pane. Assuming that ECAT[0].Enable=0 in the PowerPMAC, there

should be no errors in the Setup Messages pane at the lower side of the System Setup window. Right click on the

‘Master[0] Deactivated’ object in the left pane of the System Setup window, and select ‘Export EtherCAT Variables’.

Choose a header file name with NO spaces, and click the ‘Save’ button. If you are overwriting a file name tell it that that

is ok when the popup windows appear. The Setup Messages pane should show no errors. Close the PowerPMAC

System Setup window. Press the ‘OK’ button when the popup appears.

Go to the terminal window in the IDE. Type ‘save’ and enter. Type ‘$$$’ and enter. This saves everything to permanent

memory and resets the PowerPMAC. At this point you should be able to type ‘ECAT[0].Enable=1’ and see that it remains

at that value. Depending on how extensive changes are you may need to power cycle the entire system, or even

initialize one or more of your slaves. If after doing all of this ECAT[0].Enable refuses to remain =1, there is something

wrong with your EtherCAT configuration. Check for errors on your slaves to get an idea where the problem is. Also you

can try typing ‘ecat slaves’ in the terminal window of the IDE – you should see all of your hardware listed. NOTE: I have

seen a stubborn error where one drive had the same node address switch setting as the one beside it.

If you have slave errors, but are able to start EtherCAT communications, you may be able to get more information by

going into Diagnosis Mode. Here I have chosen the 1S drive object and can see that the Node ID Sector matches the

configured Alias value (which it should):

Some PowerPMAC variables for a 1S sitting at the first node and setup on Motor[1] are:

//Motor 1 – note this setting is for PDO map 259 target position

Motor[1].ServoCtrl=1 //activate processing for motor 1

Motor[1].Ctrl=Sys.PosCtrl //Sys.ServoCtrl for torque control

Motor[1].pDac=ECAT[0].IO[1].Data.a //This address needs to match the address of the drive
//Target Position if controlling in Position mode.

Motor[1].MotorTa=-0.000239999993937090039

Motor[1].MotorTs=10

Motor[1].JogTa=-0.00023999999

Motor[1].JogTs=10

Motor[1].AbortTs=25

Motor[1].MaxSpeed=40000

Motor[1].JogSpeed=280000

Motor[1].pEnc2=EncTable[32].a

Motor[1].AmpEnableBit=0

Motor[1].LimitBits=64 //bit 0 is MLIM, bit 1 is PLIM

Motor[1].pAmpEnable=ECAT[0].IO[0].Data.a

Motor[1].pAmpFault=ECAT[0].IO[4097].Data.a

Motor[1].pLimits=ECAT[0].IO[4104].Data.a

Motor[1].AmpFaultBit=3

Motor[1].pEnc=EncTable[32].a

motor[1].FatalFeLimit=8000000

Motor[1].Control[0]=$10000f00

Motor[1].Control[1]=$0

EncTable[32].type=1

EncTable[32].index1=0

EncTable[32].index2=0

EncTable[32].index3=0

EncTable[32].index4=0

EncTable[32].index5=0

EncTable[32].pEnc1=Sys.pushm

EncTable[32].pEnc=ECAT[0].IO[4098].Data.a

EncTable[32].MaxDelta=0

EncTable[32].ScaleFactor=1

EncTable[32].index6=0

This assumes that the EtherCAT header file created from the EC Engineer xml file looks something like:

#define Slave_0_6040_0_Controlword ECAT[0].IO[0].Data

#define Slave_0_607A_0_Targetposition ECAT[0].IO[1].Data

#define Slave_0_60FF_0_Targetvelocity ECAT[0].IO[2].Data

#define Slave_0_6071_0_Targettorque ECAT[0].IO[3].Data

#define Slave_0_6060_0_Modesofoperation ECAT[0].IO[4].Data

#define Slave_0_60B8_0_Touchprobefunctio ECAT[0].IO[5].Data

#define Slave_0_607F_0_Maxprofilevelocit ECAT[0].IO[6].Data

#define Slave_0_603F_0_Errorcode ECAT[0].IO[4096].Data

#define Slave_0_6041_0_Statusword ECAT[0].IO[4097].Data

#define Slave_0_6064_0_Positionactualval ECAT[0].IO[4098].Data

#define Slave_0_6077_0_Torqueactualvalue ECAT[0].IO[4099].Data

#define Slave_0_6061_0_Modesofoperationd ECAT[0].IO[4100].Data

#define Slave_0_60B9_0_Touchprobestatus ECAT[0].IO[4101].Data

#define Slave_0_60BA_0_Touchprobepos1pos ECAT[0].IO[4102].Data

#define Slave_0_60BC_0_Touchprobepos2pos ECAT[0].IO[4103].Data

#define Slave_0_60FD_0_Digitalinputs ECAT[0].IO[4104].Data

Appendix A

1S Drive Intialization

Connect up with USB, start Sysmac Studio, add the correct drive to the EtherCAT network. Right click on the node in the

Multiview explorer tab, click Direct Connection (USB) -> Online. Then right click on the node and pick Initialize. Choose

Parameters and Safety.

You will need to set the safety variables now according to how you have the drive wired. If using no safety or if using

EtherCAT safety, in the drive parameters set 4637.01 (Error Stop Input) = 0:No allocation.

If using no hard limits in the drive parameters set 4630.01 (Positive Drive Prohibition) = 0:No allocation and 4631.01

(Negative Drive Prohibition) = 0:No allocation.

Appendix B

1S Drive parameter setting

Connect up with USB, start Sysmac Studio, add the correct drive to the EtherCAT network. Right click on the node in the

Multiview explorer tab, click Direct Connection (USB) -> Online. Clicking on the right arrow beside the node will open

the following tree:

Double click on the Parameters. This will open a tab with the drive parameters. The values can be changed. Then either

choose the individual parameters, right click, and choose Selection to Drive, or click the Transfer Selection to Drive or

the Transfer All to Drive buttons to the lower right:

Appendix C

Scan network with EC engineer.

Open EC Engineer. Select EtherCAT Master Unit (Delta Tau) on the Start Page tab. Set the Cycle time in uSeconds to

match the Sys.ServoPeriod set in the PowerPMAC. For a 2 kHz servo period Sys.ServoPeriod=0.5, and Cycle Time will be

500. Set the IP Address of the PowerPMAC, keep Port=6000, and probably Master-Instance=0. Click the ‘Select’ button

to the right of the Mast-Instance.

Right click on the Class-A Master in the Project Explorer pane and select ‘Scan EtherCAT Network’.

The slave devices in your network should now appear under the Class-A Master in the Project Explorer pane. If you get

errors but are sure that your ESI files are correct, go into the ESI manager, delete the device you are trying to connect,

then add the file again. This will clear up errors if a new version of a device was not in the ESI file when you first added

it. Errors are shown in the Messages pane of EC engineer. A typical error might be that a device was not found for a

particular VendorID (Omron is 0x83), ProductCode (a 100W/120V 1S drive is 0xAB), or Revision (at time of writing

0x10000 for the 1S drives).

Clicking on the slaves should show the station address and information, as well as the associated ESI file in the General

tab of the Device Editor pane.

Appendix D

Startup PLC

In Solution Explorer right click on PMAC Script Language->PLC Programs->Add->New Item… Pick a name for the PLC and

click Add button.

Open plc plcStartup
 local rStartupTimer;

while(sys.ecatMasterReady==0){};
ECAT[0].Enable=1;
rStartupTimer =Sys.Time+2; //time in seconds
while(rStartupTimer >Sys.Time){};
cmd"&1enable";
rStartupTimer =Sys.Time+5;
while(rStartupTimer >Sys.Time){};
//cmd"&1b1r";
disable plc 1;

close

Open pp_startup.txt and add this line:

Enable plc plcStartup

